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Abstract
In this article, we consider the Einstein-scalar field Lichnerowicz equation

−�u + hu = Bu p−1 + Au−p−1

on any connected finite graphG = (V , E), where A, B, h are given functions on V with A ≥
0, A �≡ 0 on V , and p > 2 is a constant. By using the classical variational method, topological
degree theory and heat-flow method, we provide a systematical study on this equation by
providing the existence results for each case: positive, negative and null Yamabe-scalar field
conformal invariant, namely h > 0, h < 0 and h = 0 respectively.

Mathematics subject classification 35A15 · 35J60 · 35R02

1 Introduction

In general relativity, (V, g) stands for a spacetime with manifold V = M × R, which
is a Cauchy development of the geometric initial data (M, g, K ), where (M, g) is an n-
dimensional Riemannian manifold and K is a (0, 2)-tensor. The spacetime metric g satisfies
the Einstein equation

Ricg − 1

2
Scalgg = T ,

where T is a symmetric (0, 2)-tensor, Ricg and Scalg are the Ricci tensor and the scalar
curvature of the spacetime metric g respectively. In addition, (M, g, K ) should be embedded
isometrically into (V, g) as a slice with the second fundamental form K . Thus, the initial
data (g, K ) must satisfy the following constraint equations (see [2, 4, 20])

H(g, K ) ≡ Scalg − |K |2g + (
tracegK

)2 − 2ρ = 0, (1.1)

and

M(g, K ) ≡ ∇gK − ∇g
(
tracegK

)− J = 0, (1.2)
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where Scalg is the scalar curvature of g, ρ is the energy density and J is the momentum
density of the nongravitational field, denoted by ρ = T (n,n) and J = −T (n, ·), where n
is the unit timelike normal to the slice M × {0}, see [2, 5]. Then the unknowns in (1.1) and
(1.2) are the metric g and tensor K .

In the constantmean curvature (CMC) case, by applying a conformal change, one turns the
constraints (1.1) and (1.2) to the so-calledHamiltonian andmomentum constraints. Precisely,
for a given metric g on M , we look for some smooth scalar function ϕ with

gi j = ϕ
4

n−2 gi j , K i j = τ

n
ϕ

4
n−2 gi j + ϕ−2(σ + LgW )i j ,

satisfying the constraints (1.1) and (1.2). Here Lg denotes the conformal killing operator
acting on W defined by LgWi j := Wi, j + Wj,i − 2

n divgWgi j , τ is the mean curvature of M
computed with respect to g, and σ is a transverse and traceless tensor. So the Hamiltonian
constraint (1.1) becomes a semi-linear elliptic equation of (ϕ,W ),

�gϕ + Rψϕ = Bτ,ψ,Uϕ2∗−1 + Aπ,σ (W )ϕ−2∗−1, (1.3)

where

Rψ = kn
(
Scalg − |∇ψ |2g

)
, Aπ,σ (W ) = kn

(|σ + LgW |2g + π2),

and

Bτ,ψ,U = −kn

(
n − 1

n
τ 2 − 2U (ψ)

)
,

where �g = −divg(∇g) is the Laplace-Beltrami operator, 2∗ = 2n
n−2 is the critical Sobolev

exponent, kn = n−2
4(n−1) , Scalg is the scalar curvature relative to g,ψ is a real scalar field on the

spacetime (V, g), and U is a potential function of ψ . In addition, the momentum constraint
(1.2) turns to be

divg
(LgW

) = n − 1

n
ϕ2∗∇τ − π∇ψ. (1.4)

In the CMC setting, ∇τ ≡ 0 and (1.4) implies that W ≡ 0, then the system (1.3) and (1.4)
is semi-decoupled associated to (ϕ,W ). It remains to solve Eq. (1.3). We usually write (1.3)
as

�gu + hu = Bu2
∗−1 + Au−2∗−1 on M, (1.5)

with u = ϕ, h = Rψ , A = Aπ,σ (W ) and B = Bτ,ψ,U . Actually, Eq. (1.5) is the
Einstein-scalar fieldLichnerowicz equation onRiemannianmanifoldwithh, A, B ∈ C∞(M)

satisfying A ≥ 0.
For the case of h < 0 being a constant, Ngô-Xu [19] obtained some existence results for

positive solution to (1.5) when appropriately adjusting coefficients h, A, B, and discussed
the uniqueness property under some additional conditions. For the case of h ≤ 0, we refer
to [5, 12, 15] for more interesting work. For the case of h = 0, Ngô-Xu [20] established
some existence and uniqueness results to (1.5) under different assumptions on A and B. Ma
et al. [17] introduced the heat-flow method to address the null case as well. For the case of
−� + h being coercive (e.g., maxM h > 0 or h > 0 in M), see Hebey-Pacard-Pollack [9]
and Ma-Wei [18] for some variational arguments. Interested readers are referred to [3, 6, 7,
21] for more results on Eq. (1.5).

Recently, there has been growing interest among mathematicians in exploring the math-
ematical and physical equations on graphs. These equations include the mean field equation
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( [10, 11]) and the Kazdan–Warner equation ( [8, 13, 16, 23]). The focus of this attention
has been on issues such as the existence, uniqueness, stability, and topological degree results
associated with these equations. For instance, Huang et al. [10] recently established the exis-
tence of solutions for the mean field equation on a connected finite graph, Sun and Wang
[23] provided novel proofs for some previously known results regarding the existence and
multiplicity of solutions for the Kazdan–Warner equation on a connected finite graph by
employing Brouwer degree computations. By computing the topological degree and using
the relation between the degree and the critical group of a related functional for the Chern-
Simons Higgs models on the finite graph, Li et al. [14] derived some interesting result for
the multiple solutions of the system. Inspired by the work of [9, 14, 17–19, 23], we consider
the Einstein-scalar field Lichnerowicz Eq. (1.5) on any connected finite graph G = (V , E),
that is,

− �u + hu = Bu p−1 + Au−p−1 on V , (1.6)

where p > 2, A, B, h are given functions on V satisfying that A ≥ 0 and A �≡ 0 on V . For
simplicity, we always call equations of the form (1.6) the EL equation.

This article is organized as follows. In Sect. 2, we review some settings of a graph and
give our main results. In Sect. 3, we present some lemmas that will be used in subsequent
sections, including Sobolev embedding, Maximum Principles and a blow-up analysis result.
In Sect. 4, for the positive case, we establish some existence and multiplicity results by
variational method and calculate the topological degree for Eq. (1.6) under certain mild
assumptions. In Sect. 5, our focus shifts to the negative case, specifically when the constant
h is negative. Here, we analyze the asymptotic functional and derive a positive solution for
Eq. (1.6), with strictly negative energy. Lastly, in Sect. 6, we employ a heat-flow method to
obtain a positive solution for Eq. (1.6) in the null case and compute its associated topological
degree.

We denote by u± the positive/negative part of u ∈ VR that stands for u± = max{±u, 0}.

2 Notations andmain results

We explain some settings and represent our main results in this section. Let G = (V , E)

be a connected finite graph with m := Card(V ) < +∞. We use positive numbers ωxy to
represent the weights of edges, for any x, y ∈ V , ωxy > 0 if and only if xy ∈ E . In other
words, ωxy = 0 means xy /∈ E . In addition, the weight is symmetric, ωxy = ωyx for any
xy ∈ E . Let μ be a positive finite measure on V . Denote by |V | = ∑

x∈V μ(x) the volume
of V . Let VR be the vector space of all real functions on V . For any u ∈ VR, we define the
Laplacian operator by

�u(x) = 1

μ(x)

∑

y∼x

ωxy
(
u(y) − u(x)

)
, ∀ x ∈ V ,

where y ∼ x means xy ∈ E . As usual, we define μ(x) = ∑
y∼x ωxy for any x ∈ V , and

then � is the normalized Laplacian operator. If μ(x) ≡ 1 for any x ∈ V , then � is the
combinatorial graph Laplacian operator (see [16]). For any u, v ∈ VR, the gradient form of
u and v is given by


(u, v)(x) = 1

2μ(x)

∑

y∼x

ωxy
(
u(y) − u(x)

)(
v(y) − v(x)

)
, ∀ x ∈ V .
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For simplicity, we write 
(u)(x) = 
(u, u)(x) and ∇u · ∇v = 
(u, v). Define the length of
gradient of u as |∇u|(x) = √


(u)(x) for any x ∈ V . For any u ∈ VR, the integral of u over
V is defined by

∫

V
u(x)dμ =

∑

x∈V
μ(x)u(x).

Define the Lebesgue spaces Lq(V ) = {
u ∈ VR | ∑x∈V μ(x)|u(x)|q < ∞}

for any
q ∈ (0,+∞), and L∞(V ) = {

u ∈ VR | maxx∈V |u(x)| < ∞}
. If h ∈ VR is assumed to be

positive, then we shall consider Eq. (1.6) in the following Sobolev space

H1
h (V ) :=

{
u ∈ VR |

∫

V

(|∇u|2 + hu2
)
dμ < ∞

}
,

equipped with the norm

‖u‖H1
h (V ) =

(∫

V

(|∇u|2 + hu2
)
dμ

) 1
2

, for u ∈ H1
h (V ).

In particular, if h(x) ≡ 1 on V , H1
h (V ) is written as W 1,2(V ) as usual.

Definition 2.1 We call u ∈ VR a weak positive solution to (1.6) if u ∈ W 1,2(V ) with u > 0
on V , and the integral identity

∫

V

(

(u, v) + huv

)
dμ =

∫

V
v
(
Bu p−1 + Au−p−1)dμ

holds for any v ∈ W 1,2(V ). We say u ∈ VR is a point-wise positive solution to (1.6) if
u ∈ L∞(V ) with u > 0 on V , and

−�u(x) + h(x)u(x) = B(x)u(x)p−1 + A(x)u(x)−p−1, ∀ x ∈ V .

Remark 1 (a) One can easily check that for any u, v ∈ VR, the integration by parts formula
holds

∫

V
(−�u)vdμ =

∫

V

(u, v)dμ =

∫

V

(v, u)dμ =

∫

V
u(−�v)dμ.

(b) Supposing that G = (V , E) is a connected finite graph, then the definitions of positive
solution to (1.6) between weak sense and point-wise sense are equivalent. In fact, we just
apply Lemma 3.1 and choose the test function δx0 for any x0 ∈ V as follows

δx0(x) =
{
1, x = x0,

0, x �= x0.
(2.1)

In order to present our results, we introduce the topological degree for Eq. (1.6). For any
u ∈ L∞(V ) with u > 0 on V , we denote the associated energy functional by

J (u) = 1

2

∫

V

(|∇u|2 + hu2
)
dμ − 1

p

∫

V
B(x)u pdμ + 1

p

∫

V
A(x)u−pdμ.

We consider the map

Ah,A,B : L∞+ (V ) → L∞(V ), u �→ −�u + hu − Bu p−1 − Au−p−1,

where L∞+ (V ) = {u ∈ L∞(V ) | u > 0 on V } that can be viewed as an open subset in R
m .

Denote by BR = {u ∈ L∞(V ) | 0 < u < R} ⊆ L∞+ (V ) that can be treated as an open
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subset as well. For the positive case, we conclude by Lemma 3.3 and Proposition 4.1 that the
Brouwer degree deg(Ah,A,B , BR, 0) is well defined for R > 0 large. While for the null case,
we refer the readers to Lemma 6.6. Then by the homotopic invariance, deg(Ah,A,B , BR, 0)
is independent of R. We define the topological degree by

dh,A,B = lim
R→+∞ deg(Ah,A,B , BR, 0).

Then

deg(Ah,A,B , BR, 0) =
∑

u∈BR ,Ah,A,B (u)=0

sgn det(DAh,A,B(u)),

whenever ∂BR ∩ A−1
h,A,B({0}) = ∅. We refer the readers to [1, 23] for the corresponding

definition.
Nowwe state our main results in this article. First, for the positive case, as in [18, Theorem

1], applying the monotone method, we have

Theorem 2.2 Suppose that G = (V , E) is a connected finite graph, and h(x) > 0, A(x) > 0,
B(x) ≥ 0 on V . If u ∈ H1

h (V ) is a positive super-solution to (1.6), then for sufficiently small
δ > 0, there exists a positive solution u to Eq. (1.6) satisfying that δ ≤ u ≤ u on V .

Denote by

p� =
(
p + 2

p − 2

) p−2
2p +

(
p + 2

p − 2

)− p+2
2p

.

Under somemild assumptions, our next result involves the topological degree for the positive
case.

Theorem 2.3 Let G = (V , E) be a connected finite graph, h(x) > 0, A(x) > 0 and
B(x) > 0 on V . Suppose that

A(x) ≤ A0, B(x) ≤ B0, h(x) ≥ h0, ∀ x ∈ V , (2.2)

for some positive constants A0, B0 and h0.

(a) If there exists a positive solution S to the following equation

h0s − B0s
p−1 − A0s

−p−1 = 0, (2.3)

then for sufficiently small δ > 0, there is a positive solution u to (1.6) such that δ ≤
u(x) ≤ S on V .

(b) If A(x) ≡ A0, B(x) ≡ B0, h(x) ≡ h0 on V , and h0 = A
p−2
2p
0 B

p+2
2p

0 p�, then Eq. (1.6)
admits only the constant solution

u1(x) ≡
(
A0(p + 2)

B0(p − 2)

) 1
2p

, for any x ∈ V .

(c) Let G = (V , E) be a complete graph, that is xy ∈ E for any x, y ∈ V . Suppose that

h(x), A(x) and B(x) are not all constants on V , and h0 ≥ A
p−2
2p
0 B

p+2
2p

0 p�, then Eq. (1.6)
admits at least two positive solutions, and the topological degree dh,A,B = 0.

As in [9, Theorem 3.1], applying the variational method, we obtain a mountain pass
solution.
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Theorem 2.4 Suppose that G = (V , E) is a connected finite graph, and h(x) > 0, A(x) > 0,
B(x) > 0 on V . There exists a positive function ζ ∈ VR with ‖ζ‖H1

h (V ) = 1 and a constant
C = C(p) > 0 depending only on p such that if

∫

V
A(x)ζ−pdμ ≤ C

(
S p
h max

x∈V B(x)
)− p+2

p−2
, (2.4)

then the EL Eq. (1.6) admits a positive solution, where Sh stands for the Sobolev embedding
constant corresponding to H1

h (V ) ↪→ L p(V ).

For the negative case, we apply some similar variational analysis of [19, Theorem 1.1]
and obtain a positive solution with negative energy.

Theorem 2.5 Let G = (V , E) be a connected finite graph. Assume that A, B, h ∈ VR and

(a) h(x) ≡ h < 0 on V , where h is a constant and |h| < λB. Here λB > 0 is a positive
constant defined by (5.4) and (5.5).

(b) A(x) ≥ 0, A(x) �≡ 0 on V , and

∫

V
A(x)dμ ≤

(
p + 2

4

|h|
∫
V B−(x)dμ

) p+2
p−2 |h|(p − 2)|V | 2p

p−2

4
. (2.5)

(c) maxx∈V B(x) > 0, and
∫
V B(x)dμ < 0.

Then there exists some constant ϒ2 > 0 (see (5.30) in Lemma 5.10) such that if

max
x∈V B(x) < ϒ2

∫

V
B−(x)dμ, (2.6)

then the EL Eq. (1.6) admits at least one positive solution with negative energy.

Finally, we give our main results for the null case. We consider the heat flow (see [17])
{
ut − �u = g(x, u), in V × (0,+∞),

u(x, 0) = u0(x), on V ,
(2.7)

where u0(x) is an arbitrary positive function and g(x, u) = B(x)u p−1 + A(x)u−p−1 with
p > 2.

Theorem 2.6 Let G = (V , E) be a connected finite graph. Suppose that h(x) ≡ 0, A(x) > 0,
B(x) < 0 and the initial data u0(x) > 0 on V . Then there exists a unique positive solution
u(x, t) ∈ C∞([0,∞); VR

)
to (2.7). In addition, u(x, t) → u∞(x) in L∞(V ) as t → +∞

suitably, that is, there is a subsequence {tk} with tk → +∞ as k → +∞ such that

u(x, tk) → u∞(x) uniformly on V , as k → +∞, (2.8)

where u∞(x) is a positive solution to the EL Eq. (1.6), that is,

− �u∞ = B(x)u p−1∞ + A(x)u−p−1∞ on V . (2.9)

The last conclusion gives the topological degree for null case.

Theorem 2.7 Let G = (V , E) be a complete finite graph and h(x) ≡ 0 on V . Suppose that
A(x) > 0 and B(x) < 0 are not all constants on V . Then (1.6) admits at least one positive
solution and the topological degree d0,A,B = 1.
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Let us close this section by mentioning the new ingredients and the distinctions between
our current work and previous studies conducted on manifolds. The compact nature of the
embedding in the case of finite graphs simplifies most of the problems, making them more
direct andmanageable. In particular,when dealingwith the elliptic problem,we automatically
get a strictly lower bound for the solution, which alleviates the challenge of defining the
associated energy functional that involves the term A(x)u−p−1. This a-priori estimate enables
us to calculate the associated topological degree, ensuring the existence of multiple solutions.
Furthermore, it is well-established that in the classical context,

∫ |∇|u||2 = ∫ |∇u|2. Though
it is true that

∫ |∇|u||2 ≤ ∫ |∇u|2 for the graph case, we can not show the corresponding
energy functional is differentiable. Consequently, we are constrained to work with non-
negative functions, necessitating a departure from the approach used in [19] to obtain a second
solution. In the case of the parabolic problem, defining the corresponding sub-solution and
super-solution requires us to solve the associated heat equation on the graph, which inherently
involves a systemofODEs.Toderive the existence result,we have to pay some attention on the
computations involving the term ut . Besides, we rely on the equation to justify the uniqueness
and regularity. While the underlying principles remain consistent with the classical setting
in spirit, the techniques employed turn to be slightly different due to the distinct nature of
the problems on graph.

3 Preliminaries

In this section, we present some preliminary results that will be used in subsequent parts.
Here, we denote by hmin = minx∈V h(x) if h(x) > 0 on V , and μmin = minx∈V μ(x) in this
part.

Lemma 3.1 (Sobolev embedding) Suppose that G = (V , E) is a connected finite graph and
h(x) > 0 on V . Then

(a) the Sobolev embedding H1
h (V ) ↪→ Lq(V ) is continuous for q ∈ [1,+∞], and there

exists some positive constant Sh depending on h, G and q such that for any u ∈ H1
h (V ),

it holds that

‖u‖Lq (V ) ≤ Sh‖u‖H1
h (V ). (3.1)

(b) the Sobolev embedding H1
h (V ) ↪→ Lq(V ) is compact for q ∈ [1,+∞]. Furthermore, the

boundedness and precompactness are equivalent in H1
h (V ) and Lq(V ) for q ∈ [1,+∞],

respectively.

Proof (a) Suppose that u ∈ H1
h (V ). For any x0 ∈ V , direct computation shows that

‖u‖2
H1
h (V )

=
∫

V

(

(u) + hu2

)
dμ ≥ hmin

∫

V
u2dμ = hmin

∑

x∈V
μ(x)u2(x)

≥ hminμminu
2(x0),

which implies that

|u(x0)| ≤ (hminμmin)
− 1

2 ‖u‖H1
h (V ).

Therefore, H1
h (V ) ↪→ L∞(V ) is continuous and

‖u‖L∞(V ) ≤ Sh‖u‖H1
h (V ), where Sh = (hminμmin)

− 1
2 . (3.2)

123



  138 Page 8 of 45 L. Cui et al.

Now for any q ∈ [1,+∞), we have

‖u‖qLq (V ) =
∑

x∈V
μ(x)|u(x)|q ≤

∑

x∈V
μ(x) (hminμmin)

− q
2 ‖u‖q

H1
h (V )

= |V | (hminμmin)
− q

2 ‖u‖q
H1
h (V )

.

Therefore, H1
h (V ) ↪→ Lq(V ) is continuous for any q ∈ [1,+∞) and

‖u‖Lq (V ) ≤ Sh‖u‖H1
h (V ), where Sh = |V | 1q (hminμmin)

− 1
2 . (3.3)

Combining (3.2) and (3.3), we finish the proof of (a).
(b) Let {u j } be a bounded sequence in H1

h (V ). After passing to a subsequence if necessary,
we may assume that u j⇀u in H1

h (V ). Since h is positive on V , {u j } is bounded in
L2(V ). Then up to a subsequence (still denoted by {u j }), u j⇀u in L2(V ). Thus, for any
v ∈ L2(V ), we have

lim
j→+∞

∫

V
(u j − u)vdμ = lim

j→+∞
∑

x∈V
μ(x)

(
u j (x) − u(x)

)
v(x) = 0. (3.4)

For any x0 ∈ V , we substitute the test function v = δx0 , (defined as in (2.1)), into (3.4)
and then get

lim
j→+∞ μ(x0)

(
u j (x0) − u(x0)

) = 0,

which yields that

lim
j→+∞ u j (x0) = u(x0).

As a consequence,we have u j → u in Lq(V ) forq ∈ [1,+∞]. Therefore, the embedding
H1
h (V ) ↪→ Lq(V ) is compact for q ∈ [1,+∞]. Furthermore, by the finiteness of V , we

obtain

lim
j→+∞ ‖∇u j − ∇u‖2L2(V )

= lim
j→+∞

∫

V

(u j − u)dμ

= 1

2
lim

j→+∞
∑

x∈V

∑

y∼x

ωxy

((
u j (y) − u(y)

)− (
u j (x) − u(x)

))2 = 0,

and

lim
j→+∞

∫

V
h(x)

(
u j (x) − u(x)

)2dμ = lim
j→+∞

∑

x∈V
μ(x)h(x)

(
u j (x) − u(x)

)2 = 0.

Thus, we derive the precompactness from the boundedness in H1
h (V ). On the other hand,

if u j → u in H1
h (V ), one can directly check that {u j } is bounded in H1

h (V ). Hence, the
boundedness and precompactness are equivalent in H1

h (V ). For Lq(V ), q ∈ [1,+∞],
the argument is similar and we omit the details. This finishes the proof of conclusion (b).

��

Next, we establish the Maximum Principle for the elliptic equation on finite graph.
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Lemma 3.2 (Maximum Principle) Suppose that G = (V , E) is a connected finite graph and
h(x) > 0 on V . A function u ∈ VR is said to be a super- (sub-) solution of −�u + hu = 0
if it holds that

− �u(x) + h(x)u(x) ≥ (≤) 0, ∀ x ∈ V . (3.5)

(a) If u is a super-solution of −�u + hu = 0, then u(x) ≥ 0 on V . Furthermore, it must
hold

either u ≡ 0 or u > 0 on V .

(b) If u is a sub-solution of −�u + hu = 0, then u(x) ≤ 0 on V . Furthermore, it must hold

either u ≡ 0 or u < 0 on V .

Proof (a) We prove the conclusion by contradiction. Suppose that this is not true and there
exists x0 ∈ V such that minx∈V u(x) = u(x0) < 0. Then we obtain −�u(x0) ≤ 0 and
h(x0)u(x0) < 0. From this, we deduce a contradiction to (3.5). Thus, u(x) ≥ 0 on V .
Furthermore, if there exists x1 ∈ V such that minx∈V u(x) = u(x1) = 0, then we get

0 ≥ −�u(x1) = −�u(x1) + h(x1)u(x1) ≥ 0,

which implies that

0 = −�u(x1) = − 1

μ(x1)

∑

y∼x1

ωx1y
(
u(y) − u(x1)

) ≤ 0.

Therefore, u(y) = u(x1) = 0 for any y ∼ x1. Since G is connected and finite, by
induction, we conclude that u(x) ≡ 0 on V . This finishes the proof of (a).

(b) Applying (a) to −u, we get the desired conclusion.
��

Remark 2 In general, for h(x) > 0 on V , we call function u ∈ VR a super-solution of
−�u + hu = 0 on V if for any ψ ∈ H1

h (V ) with ψ ≥ 0, it holds that
∫

V

(

(u, ψ) + huψ

)
dμ ≥ 0. (3.6)

For any x0 ∈ V , substituting the test function ψ = δx0 (defined as in (2.1)) into (3.6), we
have

−�u(x0) + h(x0)u(x0) ≥ 0.

As a consequence, the definitions of super-solution are equivalent between weak sense and
point-wise sense. The same conclusion holds for sub-solutions.

Lemma 3.3 Suppose that A, B, h ∈ VR, A(x) ≥ 0 and A(x) �≡ 0 on V . Let {un} be a
sequence of positive solutions to (1.6), namely,

−�un(x) + hn(x)un(x) = Bn(x)un(x)
p−1 + An(x)un(x)

−p−1, ∀ x ∈ V ,

where {An}, {Bn} and {hn} satisfy that
lim

n→+∞ An(x) = A(x), lim
n→+∞ Bn(x) = B(x), lim

n→+∞ hn(x) = h(x), ∀ x ∈ V .

Assume that {un} is uniformly bounded from below by a positive constant. Then, up to a
subsequence, one of the following alternatives holds

123



  138 Page 10 of 45 L. Cui et al.

(a) either {un} is uniformly bounded (that is, bounded in L∞(V )), or
(b) there exists x0 ∈ V such that un(x0) converges to +∞ and B(x0) = 0. Moreover, {un}

is uniformly bounded from above in � := {
x ∈ V | B(x) > 0

}
.

Proof If {un} is uniformly bounded fromabove, then {un} is uniformly bounded, and hence (a)
holds true. While if lim sup

n→+∞
max
x∈V un(x) → +∞, we may assume that there is a subsequence

of {un}, still denoted by {un}, and some x0 ∈ V such that

un(x0) = max
x∈V un(x) → +∞, as n → +∞. (3.7)

On the other hand, since {un} is uniformly bounded from below by a positive constant, for
any x ∈ V we have

Bn(x)un(x)
p−1 − hn(x)un(x) = −�un(x) − An(x)un(x)

−p−1

≤ 1

μ(x)

∑

y∼x

ωx y(un(x) − un(y)) + 0

≤ un(x) + C,

which implies that

Bn(x) − hn(x)un(x)
2−p ≤ (un(x) + C) un(x)

1−p.

Letting n → +∞, we deduce that B(x) ≤ 0 whenever lim sup
n→+∞

un(x) → +∞, where we

have used that p > 2. Hence {un} is uniformly bounded in � = {
x ∈ V | B(x) > 0

}
. Thus

by (3.7), we have B(x0) ≤ 0.
Next we prove that B(x0) ≥ 0. Using the fact that x0 is a maximum point of un(x) on V

we have

Bn(x0)un(x0)
p−1 = −�un(x0) + hn(x0)un(x0) − An(x0)un(x0)

−p−1

≥ hn(x0)un(x0) − An(x0)un(x0)
−p−1,

which implies that

Bn(x0) ≥ hn(x0)un(x0)
2−p − An(x0)un(x0)

−2p.

Letting n → +∞, we deduce that B(x0) ≥ 0. Thus, B(x0) = 0. This finishes the proof of
Lemma 3.3. ��

4 Variational analysis and topological degree for the positive case

In this section, we consider the positive solution of the EL Eq. (1.6), namely,

− �u + hu = Bu p−1 + Au−p−1 on V , (4.1)

where A, B, h ∈ VR, h(x) > 0, A(x) ≥ 0 and A(x) �≡ 0 on V unless otherwise specified.

Proposition 4.1 Suppose that A(x) > 0 and B(x) > 0 on V . If

max
x∈V

h(x)

A(x)
p−2
2p B(x)

p+2
2p

< p�,

then Eq. (4.1) does not possess any positive solution.
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Proof Suppose that u is a positive solution to (4.1). Letting x0 ∈ V be a minimum point of
u on V , then we have −�u(x0) ≤ 0 and

h(x0) ≥ B(x0)u(x0)
p−2 + A(x0)u(x0)

−p−2 > A(x0)u(x0)
−p−2,

which implies that

u(x) ≥ u(x0) >

(
A(x0)

h(x0)

) 1
p+2 ≥

(
min
x∈V

A(x)

h(x)

) 1
p+2

, ∀ x ∈ V . (4.2)

It follows that any positive solution to (4.1) is uniformly bounded from below by a positive
constant. Furthermore, denote by

f (t) = B(x0)t + A(x0)t
− p+2

p−2 , t > 0.

One can easily obtain that mint>0 f (t) = f (t0), where

t0 =
(
A(x0)(p + 2)

B(x0)(p − 2)

) p−2
2p

, f (t0) = A(x0)
p−2
2p B(x0)

p+2
2p p�.

Hence, there must exist some x ∈ V such that

h(x) ≥ A(x)
p−2
2p B(x)

p+2
2p p�.

Contradiction arises. This finishes the proof of Proposition 4.1. ��
Example 1 Let G = (V , E) be a connected finite graph. Then the following EL equation

− �u + u = u p−1 + u−p−1 on V , (4.3)

does not possess any positive solution. In fact, by Proposition 4.1, the nonexistence is trivial.
We can also obtain this result by the a priori estimate (4.2). Indeed, supposing that u is a
positive solution to (4.3), we choose some minimum point x0 of u on V . Then by (4.2), we
find that u(x) ≥ u(x0) ≥ 1 for any x ∈ V . However,

u(x0) ≥ −�u(x0) + u(x0) = u(x0)
p−1 + u(x0)

−p−1 > u(x0)
p−1 ≥ u(x0), since p > 2.

Then contradiction arises and the desired conclusion holds.

Applying similar arguments of [9, Theorems 2.1 and 2.2], we get the following two
nonexistence results, Propositions 4.2 and 4.3.

Proposition 4.2 Suppose that B(x) > 0 on V and

(∫

V
h

p−1
p−2 B− 1

p−2 dμ

) p−2
p−1

< p�
(∫

V
A

p−1
2p B

p+1
2p dμ

) p−2
p−1

. (4.4)

Then Eq. (4.1) does not possess any positive solution.

Proof Suppose that (4.1) admits a positive solution u and (4.4) holds. Integrating Eq. (4.1)
on both sides, we obtain

∫

V
hudμ =

∫

V
Bu p−1dμ +

∫

V
Au−p−1dμ. (4.5)
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By Hölder’s inequality we get

∫

V
hudμ ≤

(∫

V
h

p−1
p−2 B− 1

p−2 dμ

) p−2
p−1

(∫

V
Bu p−1dμ

) 1
p−1

,

and

∫

V
A

p−1
2p B

p+1
2p dμ ≤

(∫

V
Bu p−1dμ

) p+1
2p
(∫

V
Au−p−1dμ

) p−1
2p

.

Combining the above two inequalities with (4.5), we have

(∫
V Bu p−1dμ

) p−2
p−1 +

(∫
V A

p−1
2p B

p+1
2p dμ

) 2p
p−1 (∫

V Bu p−1dμ
)− p+2

p−1

≤
(∫

V h
p−1
p−2 B− 1

p−2 dμ

) p−2
p−1

.

Set f̃ (t) = t + Kt−
p+2
p−2 for t > 0, where

t =
(∫

V
Bu p−1dμ

) p−2
p−1

and K =
(∫

V
A

p−1
2p B

p+1
2p dμ

) 2p
p−1

.

One can easily check that

min
t>0

f̃ (t) = f̃ (t1) = p�K
p−2
2p = p�

(∫

V
A

p−1
2p B

p+1
2p dμ

) p−2
p−1

,

where

t1 =
(
K

p + 2

p − 2

) p−2
2p =

(
p + 2

p − 2

) p−2
2p
(∫

V
A

p−1
2p B

p+1
2p dμ

) p−2
p−1

.

Therefore, we deduce that

p�
(∫

V
A

p−1
2p B

p+1
2p dμ

) p−2
p−1 ≤

(∫

V
h

p−1
p−2 B− 1

p−2 dμ

) p−2
p−1

,

which contradicts to (4.4). This finishes the proof of Proposition 4.2. ��

Remark 3 Proposition 4.2 is a general version of Proposition 4.1. By Proposition 4.1, if we
assume that

h(x) < A(x)
p−2
2p B(x)

p+2
2p p�, ∀ x ∈ V , (4.6)

then Eq. (4.1) does not admit any positive solution. We can rewrite (4.6) as

h(x)
p−1
p−2 B(x)−

1
p−2 <

(
p�) p−1

p−2 A(x)
p−1
2p B(x)

p+1
2p . (4.7)

Integrating (4.7) on both sides we obtain (4.4), since V is finite. Particularly, Example 1 also
provides an example for Proposition 4.2.
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Proposition 4.3 Suppose that G = (V , E) is a connected finite graph and

S p
h κ p

(
max
x∈V B−(x) + S−p

h κ2−p
) 1

2

<

∫

V
A

1
2 (x)dμ (4.8)

for some constant κ > 0, where Sh is the Sobolev embedding constant for H1
h (V ) ↪→ L p(V )

(Lemma 3.1-(a) with q = p). Then Eq. (4.1) does not possess positive solutions satisfying
‖u‖H1

h (V ) ≤ κ .

Proof Suppose that u is a positive solution to (4.1) satisfying ‖u‖H1
h (V ) ≤ κ . Multiplying

(4.1) by u and integrating on both sides, we get
∫

V
Bu pdμ +

∫

V
Au−pdμ = ‖u‖2

H1
h (V )

≤ κ2. (4.9)

Applying the Sobolev’s inequality (3.1) with q = p, we obtain
∫

V
Bu pdμ ≥ −S p

h κ p max
x∈V B−(x),

which together with (4.9) implies that
∫

V
Au−pdμ ≤ κ2 + S p

h κ p max
x∈V B−(x). (4.10)

On the other hand, by Hölder’s inequality, it holds that

∫

V
A

1
2 (x)dμ ≤

(∫

V
Au−pdμ

) 1
2
(∫

V
u pdμ

) 1
2 ≤

(∫

V
Au−pdμ

) 1
2

S
p
2
h κ

p
2 . (4.11)

Hence we deduce from (4.10) to (4.11) that

∫

V
A

1
2 (x)dμ ≤ S p

h κ p
(
max
x∈V B−(x) + S−p

h κ2−p
) 1

2

,

which contradicts to (4.8). This finishes the proof of Proposition 4.3. ��

4.1 Monotonemethod solution

In this subsection, we shall find positive solutions to Eq. (4.1) by monotone method.

Proof of Theorem 2.2 For sufficiently small constant δ > 0, u ≡ δ is a sub-solution to (4.1).
In fact, one can easily check that

h(x)δ ≤ B(x)δ p−1 + A(x)δ−p−1 on V ,

for δ > 0 small enough. In the remainder of this proof, δ is fixed as above, and let δ <

minx∈V u(x) for any x ∈ V . We define the energy functional I corresponding to Eq. (4.1)
as

I(u) = 1

2

∫

V

(|∇u|2 + hu2
)
dμ − 1

p

∫

V
Bu pdμ + 1

p

∫

V
Au−pdμ, (4.12)

for u ∈ N , where

N = {
u ∈ H1

h (V ) | δ ≤ u ≤ u on V
}
. (4.13)
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Notice that for any u ∈ N , we have

I(u) ≥ 1

2
hminδ

2|V | − 1

p
max
x∈V B(x)

∫

V
u pdμ + 1

p

∫

V
Au−pdμ,

which implies that I is bounded from below in N . We consider the minimizing problem

α := inf
u∈N I(u) > −∞. (4.14)

Suppose that {un} ⊆ N is a minimizing sequence of α, that is,

1

2

∫

V

(|∇un |2 + hu2n
)
dμ − 1

p

∫

V
Bu p

n dμ + 1

p

∫

V
Au−p

n dμ = α + on(1). (4.15)

Notice that
∣
∣
∣
∣−

1

p

∫

V
Bu p

n dμ + 1

p

∫

V
Au−p

n dμ

∣
∣
∣
∣ ≤ 1

p
max
x∈V B(x)

∫

V
u pdμ + 1

pδ p

∫

V
A(x)dμ.

Then, combining the above inequality with (4.15), we find that {un} is bounded in H1
h (V ).

Since N is closed and convex, N is weakly closed. By Lemma 3.1-(b), up to a subsequence
(still denoted by {un}), we may assume that there exists some u ∈ N such that un → u in
L∞(V ) as n → +∞. Thus by (4.15), one can easily check that I(u) = lim

n→+∞ I(un) = α,

which implies that α is achieved by u ∈ N .
It remains to prove that the minimizer u satisfies Eq. (4.1). To this end, we apply the same

arguments with [22, Theorem 2.4]. For any v ∈ H1
h (V ) and any ε > 0, we choose a test

function vε , defined by

vε = min
{
u,max{δ, u + εv}} = u + εv + v1ε − v2ε,

where

v1ε := max{0, δ − (u + εv)} and v2ε := max{0, u + εv − u}.
Then v1ε, v2ε ∈ H1

h (V ) and are nonnegative. For any x ∈ V ,

vε(x) =

⎧
⎪⎨

⎪⎩

δ, if u(x) + εv(x) ≤ δ,

u(x) + εv(x), if δ < u(x) + εv(x) ≤ u(x),

u(x), if u(x) < u(x) + εv(x),

which implies that vε ∈ N . Since u is a minimizer of I in N , we have 〈I ′(u), vε − u〉 ≥ 0,
that is,

〈I ′(u), v〉 ≥ 1

ε
〈I ′(u), v2ε − v1ε〉. (4.16)

Since u is a super-solution of (4.1), we have

−�u(x) + h(x)u(x) ≥ B(x)u(x)p−1 + A(x)u(x)−p−1, ∀ x ∈ V ,

and then

〈I ′(u), v2ε〉 =
∫

V

(

(u, v2ε) + huv2ε

)
dμ −

∫

V

(
Bu p−1 + Au−p−1)v2εdμ ≥ 0.

(4.17)
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Thus by (4.17) we have

〈I ′(u), v2ε〉 = 〈I ′(u), v2ε〉 + 〈I ′(u) − I ′(u), v2ε〉 ≥ 〈I ′(u) − I ′(u), v2ε〉
=
∫

V

(

(u − u, v2ε) + h(u − u)v2ε

)
dμ −

∫

V

(
B(u p−1 − u p−1)

+ A(u−p−1 − u−p−1)
)
v2εdμ

≥
∫

Ṽ

(

(u − u, v2ε) + h(u − u)v2ε

)
dμ −

∫

Ṽ

(
B(u p−1 − u p−1)

+ A(u−p−1 − u−p−1)
)
v2εdμ

=
∫

Ṽ

(

(u − u) + h(u − u)2

)
dμ + ε

∫

Ṽ

(

(u − u, v) + h(u − u)v

)
dμ

−
∫

Ṽ

(
B(u p−1 − u p−1) + A(u−p−1 − u−p−1)

)
(u + εv − u)dμ

≥ ε

∫

Ṽ

(

(u − u, v) + h(u − u)v

)
dμ

−
∫

Ṽ

∣∣B(u p−1 − u p−1) + A(u−p−1 − u−p−1)
∣∣(u + εv − u)dμ

≥ ε

∫

Ṽ

(

(u − u, v) + h(u − u)v

)
dμ − ε

∫

Ṽ

∣∣B(u p−1 − u p−1)

+ A(u−p−1 − u−p−1)
∣∣vdμ,

where

Ṽ = {
x ∈ V | ∃ y ∈ V1 such that xy ∈ E

}
and

V1 = {
x ∈ V | u(x) < u(x) ≤ u(x) + εv(x)

}
.

Since V is finite, Ṽ = ∅ for ε > 0 sufficiently small. We conclude that

〈I ′(u), v2ε〉 ≥ 0. (4.18)

Similarly, since δ is a sub-solution of (4.1), by the same arguments as (4.17) and (4.18), we
conclude that

〈I ′(u), v1ε〉 ≤ 0. (4.19)

Substituting (4.18) and (4.19) into (4.16), we have 〈I ′(u), v〉 ≥ 0 for any v ∈ H1
h (V ). Taking

the sign of v as minus and we get 〈I ′(u), v〉 ≤ 0. Hence it holds 〈I ′(u), v〉 = 0. Finally, we
choose the test function v = δx0 for any x0 ∈ V , defined as in (2.1), and see that u is indeed
a point-wise positive solution to (4.1). This finishes the proof of Theorem 2.2. ��

Theorem 4.4 Suppose that G = (V , E) is a connected finite graph, h(x) > 0, A(x) > 0
and B(x) ≤ 0 on V . Then Eq. (4.1) has at least one positive solution.

Proof One can easily find that u ≡ ε is a sub-solution to (4.1) for ε > 0 sufficiently
small, and u ≡ M is a super-solution to (4.1) for M > 0 sufficiently large. Hence by the
same arguments of Theorem 2.2, we can obtain a positive solution to (4.1) by the sub- and
super-solution method. ��
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4.2 Topological degree

We give some results on the uniqueness and multiplicity of solutions via topological degree
method.

Proof of Theorem 2.3 (a) Since S is a positive solution to (2.3), we get

h(x)S − B(x)S p−1 − A(x)S−p−1 ≥ h0S − B0S
p−1 − A0S

−p−1 = 0 = �S, ∀ x ∈ V ,

which implies that u := S is a positive super-solution to (4.1). Then by Theorem 2.2, we
obtain the existence result.

(b) One can check easily that u1 satisfies (1.6). We assume that u(x) is another positive
solution. Let x0 ∈ V be such that u(x0) = minx∈V u(x). Then −�u(x0) ≤ 0 and

h0 ≥ B0u(x0)
p−2 + A0u(x0)

−p−2 ≥ h0,

which implies that −�u(x0) = 0. Here we have used the same computations with
Proposition 4.1. Thus, u(x) is equal to a positive constant, and then u(x) ≡ u1 on V .

(c) Since any positive constant less than h0 can be regarded as a positive lower bound of

h(x), without loss of generality, we assume that h0 = A
p−2
2p
0 B

p+2
2p

0 p�. For any t ∈ [0, 1],
let ut be a positive solution of

−�ut + (
(1 − t)h + th0

)
ut = (

(1 − t)B + t B0
)
u p−1
t

+((1 − t)A + t A0
)
u−p−1
t on V .

(4.20)

Next we claim that {ut } is uniformly bounded on V . Suppose this is not true. Then there
exists a sequence {tn} ⊆ [0, 1] such that lim sup

n→+∞
max
x∈V un(x) → +∞, where un = utn is

the positive solution to

−�un(x) + ĥn(x)un(x) = B̂n(x)un(x)
p−1 + Ân(x)un(x)

−p−1, ∀ x ∈ V ,

and { Ân}, {B̂n} and {̂hn} satisfy that

Ân = (1 − tn)A + tn A0, B̂n = (1 − tn)B + tn B0, ĥn = (1 − tn)h + tnh0.

After passing to a subsequence if necessary, we assume that tn → t∗ as n → +∞ with
t∗ ∈ [0, 1]. Then

lim
n→+∞ Ân(x) = Â(x), lim

n→+∞ B̂n(x) = B̂(x), lim
n→+∞ ĥn(x) = ĥ(x), ∀ x ∈ V ,

where

Â(x) = (1 − t∗)A + t∗A0 > 0, B̂(x) = (1 − t∗)B + t∗B0 > 0,

ĥ(x) = (1 − t∗)h + t∗h0 > 0.

Thus byLemma 3.3 and Proposition 4.1, {un} is bounded in L∞(V ). Contradiction arises.
Therefore, the topological degree dh,A,B is well-defined. By the homotopy invariance,
we have dh,A,B = dh0,A0,B0 . We have shown in conclusion (b) that u1 is the unique
positive solution to (4.20) with t = 1. Hence, we conclude that

dh,A,B = dh0,A0,B0 = sgn det
(
DAh0,A0,B0(u1)

) = 0.

123



The Einstein-scalar field Lichnerowicz equations ... Page 17 of 45   138 

In fact, applying the identity h0 − (p − 1)B0u
p−2
1 + (p + 1)A0u

−p−2
1 = 0, one can

check that

det
(
DAh0,A0,B0(u1)

) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −ωx1x2
μ(x1)

−ωx1x3
μ(x1)

· · · −ωx1xm
μ(x1)

−ωx2x1
μ(x2)

1 −ωx2x3
μ(x2)

· · · −ωx2xm
μ(x2)

−ωx3x1
μ(x3)

−ωx3x2
μ(x3)

1 · · · −ωx3xm
μ(x3)

...
...

...
. . .

...

−ωxm x1
μ(xm )

−ωxm x2
μ(xm )

−ωxm x3
μ(xm )

· · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0.

On the other hand, we see that u1 is a positive solution to (2.3). Therefore, by conclusion
(a), we can find a positive solution u(x) ≤ u1 on V . Consequently, the second positive
solution is obtained by the fact dh,A,B = 0. This finishes the proof of Theorem 2.3.

��
Example 2 Let G = (V , E) be a connected finite graph. Then the following EL equation

−�u + 2p

p2 − 1
u = 1

p − 1
u p−1 + 1

p + 1
u−p−1 on V

possesses at least one constant solution u(x) ≡ 1 on V .

4.3 Mountain pass solution

In this subsection, we applyMountain pass theorem to address the existence issue for positive
solutions to Eq. (4.1), similarly to [9, Theorem 3.1]. To this end, we may consider the
following "asymptotic" functional

Jε(u) = 1

2

∫

V

(|∇u|2 + hu2
)
dμ − 1

p

∫

V
B(u+)pdμ + 1

p

∫

V
A
(
ε + (u+)2

)− p
2 dμ

for ε > 0 sufficiently small and u ∈ H1
h (V ). Naturally, Mountain pass geometry for Jε

could be verified and a mountain pass solution u(ε) will be obtained for the "asymptotic" Eq.
(4.34). At this point, it remains to check that the limiting function u = lim

ε→0
u(ε) satisfies the

Eq. (4.1).

Proof of Theorem 2.4 For any fixed ε > 0, we split Jε into the sum of J (1) and J (2)
ε , that is,

Jε(u) = J (1)(u) + J (2)
ε (u)

for u ∈ H1
h (V ), where

J (1)(u) = 1

2

∫

V

(|∇u|2 + hu2
)
dμ − 1

p

∫

V
B(x)(u+)pdμ

and

J (2)
ε (u) = 1

p

∫

V
A(x)

(
ε + (u+)2

)− p
2 dμ.

One can easily check that Jε ∈ C1
(
H1
h (V ),R

)
by standard arguments provided p > 2. We

divide the proof into four steps.
Step 1. Mountain pass geometry. By (3.1) with q = p, we have

∣∣∣∣
1

p

∫

V
B(x)(u+)pdμ

∣∣∣∣ ≤ 1

p
max
x∈V B(x)

∫

V
|u|pdμ ≤ 1

p
max
x∈V B(x)S p

h ‖u‖p
H1
h (V )

.
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Then for any u ∈ H1
h (V ), it holds that

G
(‖u‖H1

h (V )

) ≤ J (1)(u) ≤ F
(‖u‖H1

h (V )

)
, (4.21)

where the functions G(s), F(s) : [0,+∞) → R are defined as

G(s) = s2

2
− 1

p
max
x∈V B(x)S p

h s
p and F(s) = s2

2
+ 1

p
max
x∈V B(x)S p

h s
p.

Let s0 > 0 be such that

max
s>0

G(s) = G(s0) =
(
1

2
− 1

p

)
s20 with s0 =

(
S p
h max

x∈V B(x)
)− 1

p−2
.

In addition, G(s) increases in [0, s0] and decreases in [s0,+∞). Let κ ∈ (0, 1) be such that
κ2 = p−2

2(p+2) and set s1 = κs0. Then we get

F(s1) = κ2 s
2
0

2
+ κ p 1

p
max
x∈V B(x)S p

h s
p
0

= κ2 s
2
0

2
+ κ p s

2
0

p
≤
(
1

2
+ 1

p

)
κ2s20 = 1

2

(
1

2
− 1

p

)
s20 = 1

2
G(s0). (4.22)

In the assumption (2.4), we set the constant C = C(p) to be defined by C(p) = p−2
4 κ p ,

then (2.4) is rewritten as

1

p

∫

V
A(x)(s1ζ )−pdμ ≤ 1

2
G(s0). (4.23)

Hence we deduce from (4.21), (4.22) and (4.23) that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Jε(s1ζ ) = J (1)(s1ζ ) + J (2)
ε (s1ζ ) ≤ F(s1) + 1

p

∫

V
A(x)(s1ζ )−pdμ

≤ 1

2
G(s0) + 1

2
G(s0) = G(s0),

Jε(s0ζ ) = J (1)(s0ζ ) + J (2)
ε (s0ζ ) ≥ G(s0) + 1

p

∫

V
A(x)

(
ε + (s0ζ )2

)− p
2 dμ > G(s0),

from which we conclude that

Jε(s1ζ ) ≤ G(s0) < Jε(s0ζ ). (4.24)

Noticing that for any s > 0, it holds

Jε(sζ ) = J (1)(sζ ) + J (2)
ε (sζ ) = s2

2
− s p

p

∫

V
B(x)ζ pdμ + 1

p

∫

V
A(x)

(
ε + s2ζ 2)− p

2 dμ,

which implies that

lim
s→+∞Jε(sζ ) = −∞.

Then we can choose s2 > s0 such that

Jε(s2ζ ) < 0. (4.25)

For any u ∈ H1
h (V )with ‖u‖H1

h (V ) = s0,Jε(u) > G(s0) via (4.21). Therefore, theMountain
pass geometry is established on the basis of (4.24) and (4.25).
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As usual, we denote by

cε := inf
γ∈


max
t∈[0,1]Jε(γ (t)),

where


 = {γ (t) ∈ C([0, 1]) | γ (0) = s1ζ, γ (1) = s2ζ }.
Then we obtain the following two facts (i) and (ii):

(i). For any γ ∈ 
, ‖γ (0)‖H1
h (V ) = s1, ‖γ (1)‖H1

h (V ) = s2, and ‖γ (t)‖H1
h (V ) is continuous

with respect to t ∈ [0, 1]. Then for s0 ∈ (s1, s2), we deduce by the Intermediate Value
Theorem that there exists some t0 ∈ (0, 1) such that ‖γ (t0)‖H1

h (V ) = s0. Hence we have

max
t∈[0,1]Jε(γ (t)) ≥ Jε(γ (t0)) > G(s0) > 0,

which implies that

cε = inf
γ∈


max
t∈[0,1]Jε(γ (t)) ≥ G(s0) > 0.

(ii). Choosing γ0(t) = (
(1 − t)s1 + ts2

)
ζ ∈ 
, then by (4.23) we have

max
t∈[0,1]Jε(γ0(t)) = max

t∈[0,1]
(J (1)(γ0(t)) + J (2)

ε (γ0(t))
)

≤ max
s∈[s1,s2]

F(s) + 1

p

∫

V
A(x)

(
s1ζ
)−pdμ

= F(s2) + 1

2
G(s0) =: C̃ < +∞.

Therefore, for ε > 0 sufficiently small, it holds that

0 < G(s0) ≤ cε ≤ C̃ < +∞.

Step 2. (PS)cε condition. Let {u(ε)
n }n ⊆ H1

h (V ) be a sequence of functions satisfying

Jε(u
(ε)
n ) → cε and ‖J ′

ε(u
(ε)
n )‖ → 0, as n → +∞. (4.26)

In other words, we get

1

2

∫

V

(|∇u(ε)
n |2 + h(u(ε)

n )2
)
dμ − 1

p

∫

V
B(x)

(
(u(ε)

n )+
)pdμ

+ 1

p

∫

V
A(x)

(
ε + (

(u(ε)
n )+

)2)− p
2
dμ = cε + on(1), (4.27)

and
∫

V

(∇u(ε)
n · ∇v + hu(ε)

n v
)
dμ −

∫

V
B(x)

(
(u(ε)

n )+
)p−1

vdμ

=
∫

V
A(x)(u(ε)

n )+v
(
ε + (

(u(ε)
n )+

)2)− p
2 −1

dμ + on
(‖v‖H1

h (V )

)
, (4.28)

for any v ∈ H1
h (V ). Hence by (4.27) and (4.28) with v = u(ε)

n we have
(
1

2
− 1

p

)∫

V
B(x)

(
(u(ε)

n )+
)pdμ + 1

p

∫

V
A(x)

(
ε + (

(u(ε)
n )+

)2)− p
2
dμ
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+1

2

∫

V
A(x)

(
(u(ε)

n )+
)2(

ε + (
(u(ε)

n )+
)2)− p

2 −1
dμ = cε + on

(‖u(ε)
n ‖H1

h (V )

)+ on(1).

(4.29)

So for n sufficiently large, we have

p − 2

2p

∫

V
B(x)

(
(u(ε)

n )+
)pdμ ≤ 2cε + on

(‖u(ε)
n ‖H1

h (V )

)
. (4.30)

Thus for n sufficiently large we deduce from (4.27) and (4.30) that
∫

V

(|∇u(ε)
n |2 + h(u(ε)

n )2
)
dμ ≤ 4p

p − 2
cε + on

(‖u(ε)
n ‖H1

h (V )

)
, (4.31)

and then

− 2pcε ≤
∫

V
B(x)

(
(u(ε)

n )+
)pdμ ≤ (2cε + 1)

2p

p − 2
. (4.32)

By (4.31), we see that {u(ε)
n }n is bounded in H1

h (V ). Together with Lemma 3.1-(b), we find
that Jε satisfies the (PS)cε condition.
Step 3. Mountain pass theorem. By the Mountain pass theorem we get cε is a critical value.
Suppose that there exists a sequence {u(ε)

n }n ⊆ H1
h (V ) satisfying (4.26). By Step 2, {u(ε)

n }n
is bounded in H1

h (V ). Going if necessary to a subsequence, we may assume that there exists
some u(ε) ∈ H1

h (V ) such that

u(ε)
n (x) → u(ε)(x), ∀ x ∈ V , as n → +∞. (4.33)

It follows from (4.33) and (4.28) that u(ε) satisfies
∫

V

(∇u(ε) · ∇v + hu(ε)v
)
dμ −

∫

V
B(x)

(
(u(ε))+

)p−1
vdμ

=
∫

V
A(x)(u(ε))+v

(
ε + (

(u(ε))+
)2)− p

2 −1
dμ,

for any v ∈ H1
h (V ). Choosing the test function v = δx0 for any x0 ∈ V , defined as in (2.1),

we find that u(ε) is a point-wise solution to the following equation

−�u(ε) + hu(ε) = B(x)
(
(u(ε))+

)p−1 + A(x)(u(ε))+
(
ε + (

(u(ε))+
)2)− p

2 −1
on V .

By Lemma 3.2-(a), u(ε) ≥ 0 on V . Consequently, u(ε) satisfies

− �u(ε) + hu(ε) = B(x)(u(ε))p−1 + A(x)u(ε)
(
ε + (u(ε))2

)− p
2 −1 on V . (4.34)

Furthermore, we also conclude from Lemma 3.2-(a) that either u(ε) ≡ 0 or u(ε) > 0 on
V . Now we claim that u(ε) ≡ 0 on V cannot happen. In fact, by (4.29) and (4.32), for n
sufficiently large, we have

1

p

∫

V
A(x)

(
ε + (

(u(ε)
n )+

)2)− p
2
dμ ≤ − p − 2

2p

∫

V
B
(
(u(ε)

n )+
)pdμ + cε

+ on
(‖u(ε)

n ‖H1
h (V )

)+ on(1)

≤ cε + 2pcε

p − 2

2p
+ on

(‖u(ε)
n ‖H1

h (V )

)+ on(1)

≤ (p − 1)cε + cε ≤ pC̃ .
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If there exists a sequence of positive numbers {εk}k with εk → 0 as k → +∞ such that
u(εk ) ≡ 0, then we deduce from u(εk )

n → u(εk ) on V as n → +∞ that

0 <

∫

V
A(x)dμ ≤ p2C̃ε

p
2
k → 0, as k → +∞.

Contradiction arises. Thus for any sufficiently small ε > 0, u(ε) �≡ 0 on V . We conclude that
u(ε) is a positive solution to Eq. (4.34).
Step 4. The limiting equation. By (4.31), for ε > 0 sufficiently small we get

∫

V

(|∇u(ε)|2 + h(u(ε))2
)
dμ ≤ 4p

p − 2
cε + cε ≤ 5p − 2

p − 2
C̃ . (4.35)

Suppose that {εk}k is a sequence of positive numbers satisfying εk → 0 as k → +∞, and
u(εk ) is the corresponding positive solution (obtained as in Step 3) to Eq. (4.34), that is, u(εk )

satisfies

− �u(εk ) + hu(εk ) = B(x)(u(εk ))p−1 + A(x)u(εk )
(
εk + (u(εk ))2

)− p
2 −1 on V . (4.36)

By (4.35), {u(εk )}k is bounded in H1
h (V ). Then by Lemma 3.1-(a), {u(εk )}k is bounded in

L∞(V ). We claim that {u(εk )} is uniformly bounded from below by a positive constant.
Indeed, let xk ∈ V be such that minx∈V u(εk )(x) = u(εk )(xk). Then −�u(εk )(xk) ≤ 0, and
we deduce by (4.36) that

h(xk) > A(xk)
(
εk + (u(εk )(xk))

2)− p
2 −1

. (4.37)

Since εk → 0 as k → +∞, for k sufficiently large, we have

εk <
3

4

(
min
x∈V

A(x)

h(x)

) 2
p+2

.

Thus by (4.37), one can easily check that

u(εk )(xk) ≥ 1

2

(
min
x∈V

A(x)

h(x)

) 1
p+2 := Ĉ > 0.

Again since {u(εk )}k is bounded in H1
h (V ), by Lemma 3.1-(b), we may assume that there

exists some u ∈ H1
h (V ) and a subsequence, still denoted by {u(εk )}k , such that

u(εk )(x) → u(x), ∀ x ∈ V , as k → +∞.

In particular, u(x) ≥ Ĉ on V . Letting k → +∞ in (4.36), we find that u satisfies (4.1).
Therefore, u is a positive solution to the EL Eq. (4.1). This finishes the proof of Theorem
2.4. ��

5 Variational analysis on the negative case

In this section, we consider the negative case

− �u + hu = Bu p−1 + Au−p−1 on V , (5.1)

where h(x) < 0, A(x) ≥ 0 and A(x) �≡ 0 on V unless otherwise specified.
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5.1 Necessary conditions

Proposition 5.1 (a) If (5.1) admits positive solutions, then it holds that
∫

V
B(x)dμ < 0. (5.2)

(b) If B(x) ≥ 0 on V , then (5.1) admits no positive solutions.

Proof (a) Let u be a positive solution to (5.1). Multiplying (5.1) by u1−p and integrating by
parts, we have

0 ≥
∫

V

(u, u1−p)dμ >

∫

V
B(x)dμ,

which gives (5.2). It also implies that B(x) is negative somewhere.
(b) Suppose that B(x) ≥ 0 on V , and u is a positive solution to (5.1). Let x0 ∈ V be such

that u(x0) = minx∈V u(x) > 0. Then we have −�u(x0) ≤ 0 and

0 > h(x0) ≥ B(x0)u(x0)
p−2 + A(x0)u(x0)

−p−2 ≥ 0.

Contradiction arises. Of course, one can directly get conclusion (b) from (a).
��

Remark 4 For any positive solution u to Eq. (5.1), let x0 ∈ V be a minimum point of u. Then
we have −�u(x0) ≤ 0 and

0 > h(x0) ≥ B(x0)u(x0)
p−2 + A(x0)u(x0)

−p−2 ≥ B(x0)u(x0)
p−2,

which implies that B(x0) < 0, and

u(x) ≥ u(x0) ≥
(
h(x0)

B(x0)

) 1
p−2

, ∀ x ∈ V .

This gives a uniform lower bound for positive solutions to (5.1), denoted by

u(x) ≥
(
maxx∈V h(x)

minx∈V B(x)

) 1
p−2

> 0, ∀ x ∈ V . (5.3)

Suppose that (5.2) holds and maxx∈V B(x) > 0. Let

C(B) =
{
u ∈ W 1,2(V ) | u ≥ 0, u �≡ 0 on V ,

∫

V
B−(x)udμ = 0

}
. (5.4)

Obviously, C(B) �= ∅. In fact, δx0 ∈ C(B), where x0 ∈ V is a maximum point of B(x).
Define

λB = inf
{
‖∇u‖2L2(V )

‖u‖−2
L2(V )

| u ∈ C(B)
}

. (5.5)

Naturally, one can check that λB > 0. In the rest of this section, we keep in mind that the
assumptions (a), (b) and (c) in Theorem 2.5 hold.
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5.2 Analysis on the energy functional

For any ε > 0, we consider the asymptotic equation

− �u + hu = B(x)|u|p−2u + A(x)u(u2 + ε)−
p
2 −1 on V , (5.6)

which corresponds to the energy functional Jε(u) : W 1,2(V ) → R with

Jε(u) = 1

2

∫

V

(|∇u|2 + hu2
)
dμ − 1

p

∫

V
B(x)|u|pdμ + 1

p

∫

V
A(x)

(
u2 + ε

)− p
2 dμ.

(5.7)

It is easy to check thatJε ∈ C1(W 1,2(V ),R).We aim to find the critical points ofJε , namely,
the point-wise solutions to (5.6). To this end, we introduce the set

Bk =
{
u ∈ W 1,2(V ) | u ≥ 0 on V , ‖u‖L p(V ) = k

1
p

}
, ∀ k > 0. (5.8)

It is easy to see that Bk �= ∅, since uk(x) = k
1
p |V |− 1

p ∈ Bk . Define

�ε
k := inf

u∈Bk
Jε(u). (5.9)

Applying the Hölder’s inequality, we have

1

2

∫

V
hu2dμ ≥ h

2
|V |1− 2

p k
2
p , ∀ u ∈ Bk, (5.10)

and

− 1

p

∫

V
B(x)|u|pdμ ≥ − k

p
max
x∈V B(x), ∀ u ∈ Bk . (5.11)

Combining (5.7), (5.10) and (5.11), we get that

Jε(u) ≥ h

2
|V |1− 2

p k
2
p − k

p
max
x∈V B(x), ∀ u ∈ Bk . (5.12)

Therefore by (5.9) and (5.12), �ε
k > −∞ if k is finite. Furthermore, direct computation

shows that

�ε
k ≤ Jε(uk) = h

2
|V |1− 2

p k
2
p − k

p|V |
∫

V
B(x)dμ + 1

p

∫

V
A(x)

(
k

2
p |V |− 2

p + ε
)− p

2
dμ,

(5.13)

which implies that �ε
k < +∞. Furthermore, it is not difficult to check that Jε1(u) > Jε2(u)

for any u ∈ Bk and ε1 < ε2. This shows that �ε
k is monotone decreasing with respect to ε

for fixed k. Based on the above discussion, we shall study the minimization problem (5.9).

Proposition 5.2 For fixed k and ε, �ε
k is achieved by a positive function.

Proof Suppose that {u j } ⊆ Bk is a minimizing sequence of �ε
k . Since {u j } is bounded in

L p(V ), by Lemma 3.1-(b), there exists some u(k)
ε ∈ VR such that up to a subsequence (still

denoted by {u j }),
u j (x) → u(k)

ε (x), as j → +∞, ∀ x ∈ V .
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Then u(k)
ε ≥ 0 on V and ‖u(k)

ε ‖L p(V ) = k
1
p . Hence u(k)

ε ∈ Bk , and it is easy to check

�ε
k = lim

j→+∞Jε(u j ) = Jε(u
(k)
ε ),

and there exists some λ ∈ R such that

− �u(k)
ε + hu(k)

ε = (B(x) + λ)(u(k)
ε )p−1 + A(x)u(k)

ε

(
(u(k)

ε )2 + ε
)− p

2 −1 on V . (5.14)

Since u(k)
ε ≥ 0 on V , we conclude that u(k)

ε > 0 on V . In fact, if there exists some x0 ∈ V
such that

0 = u(k)
ε (x0) = min

x∈V u(k)
ε (x),

then by (5.14), we have�u(k)
ε (x0) = 0. SinceG is connected and finite, u(k)

ε (x) ≡ u(k)
ε (x0) =

0. This contradicts to u(k)
ε ∈ Bk . Therefore, u

(k)
ε is a positive solution to (5.14). ��

Now we analyze the asymptotic behavior of �ε
k when both k and ε change.

Lemma 5.3 Under the assumptions (a) and (c), it holds that

lim
k→0+ �k

2
p

k = +∞.

Furthermore, there exists some k� sufficiently small and independent of ε such that �ε
k�

> 0
for any ε ≤ k�.

Proof For any ε ≤ k
2
p and u ∈ Bk , by Hölder’s inequality and Jensen’s inequality we deduce

that
∫

V
A

1
2 (x)dμ ≤

(∫

V
A(x)(u2 + ε)−

p
2 dμ

) 1
2
(∫

V
(u2 + ε)

p
2 dμ

) 1
2

≤ 2
p−2
4 (1 + |V |) 1

2 k
1
2

(∫

V
A(x)(u2 + ε)−

p
2 dμ

) 1
2

,

which implies that
∫

V
A(x)(u2 + ε)−

p
2 dμ ≥ 1

2
p−2
2 (1 + |V |) k

(∫

V
A

1
2 (x)dμ

)2

. (5.15)

Then by (5.10), (5.11) and (5.15), we obtain

�ε
k = inf

u∈Bk
Jε(u) ≥ h

2
|V |1− 2

p k
2
p − k

p
max
x∈V B(x)

+ 1

2
p−2
2 p (1 + |V |) k

(∫

V
A

1
2 (x)dμ

)2

, ∀ u ∈ Bk .

Thus, we have �k
2
p

k → +∞ as k → 0+. One can easily choose some k� < 1 independent
of ε such that

h

2
|V |1− 2

p k
2
p
� − k�

p
max
x∈V B(x) + 1

2
p−2
2 p (1 + |V |) k�

(∫

V
A

1
2 (x)dμ

)2

> 0.
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In fact, we can choose k� as

k� = min

⎧
⎪⎨

⎪⎩

( ∫
V A

1
2 (x)dμ

)2

2
p
2 −2 p (1 + |V |) (|h||V |1− 2

p + 2
p max

x∈V B(x)
) ,

(
|h||V |2− 2

p

∫
V B−(x)dμ

) p
p−2

, 1

⎫
⎪⎬

⎪⎭
.

(5.16)

Here we have used the fact that k� < k
2
p
� . As a consequence, we have

0 < �
k
2
p

�

k�
≤ �

k�

k�
≤ �ε

k�
, for any ε ≤ k�.

This finishes the proof of Lemma 5.3. ��
Next we analyze the asymptotic behavior of �ε

k as k → +∞.

Lemma 5.4 Under the assumptions (a) and (c), for any fixed ε > 0, it holds that

lim
k→+∞ �ε

k = −∞.

Proof Let � = {x ∈ V | B(x) > 0} and define

χ�(x) =
{
1, if x ∈ �,

0, if x ∈ V \ �.

Obviously, � �= ∅ which is due to the assumption (c) in Theorem 2.5. Denote by

ζ(t) =
∫

V
B(x)etχ�(x)dμ =

∑

x∈�

μ(x)B(x)et +
∑

x∈V \�
μ(x)B(x), t ∈ R. (5.17)

Then ζ(t) is smooth in R and ζ(0) < 0 by the assumption (5.2). For any t ∈ R, we have

ζ(t) =
∫

V
B+(x)etχ�(x)dμ −

∫

V \�
B−(x)etχ�(x)dμ

=
∫

�

B+(x)etdμ −
∫

V \�
B−(x)dμ

≥ min
x∈V B+(x)|�|et −

∫

V
B−(x)dμ.

Thus, there exists some t0 � 1 such that ζ(t0) ≥ 1. Moreover, direct computation shows
that

ζ ′(t) =
∑

x∈�

μ(x)B(x)et =
∫

V
B(x)χ�(x)etχ�(x)dμ > 0,

which implies that ζ(t) is strictly increasing in R and ζ(t) ≥ 1 for any t ≥ t0.
We choose a positive function v(x) = c exp

(
t0χ�(x)

)
, x ∈ V , where c > 0 is determined

by

|V | =
∫

V
v pdμ = cp

∫

V
ept0χ�(x)dμ. (5.18)
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Thus, it is easy to see that
∫

V
B(x)v pdμ = cp

∫

V
B(x)ept0χ�(x)dμ = cpζ(pt0) > cpζ(t0) > 0. (5.19)

Since ukv = k
1
p |V |− 1

p v ∈ Bk , we have

Jε(ukv) = 1

2
k

2
p |V |− 2

p

∫

V

(|∇v|2 + hv2
)
dμ − k

p|V |
∫

V
B(x)v pdμ

+ 1

p

∫

V
A(x)

(
k

2
p |V |− 2

p v2 + ε
)− p

2 dμ

≤ 1

2
k

2
p |V |− 2

p

∫

V

(|∇v|2 + hv2
)
dμ − k

p|V |
∫

V
B(x)v pdμ + 1

p
ε− p

2

∫

V
A(x)dμ,

which shows that Jε(ukv) → −∞ as k → +∞ by (5.19). This finishes the proof of Lemma
5.4. ��
Lemma 5.5 Under the assumptions (a), (b) and (c), there exists some k� > 0 independent of
ε such that �ε

k�
≤ 0 for any ε > 0. In particular, k� > k�.

Proof By (5.13), we have

Jε(uk) ≤ h

2
|V |1− 2

p k
2
p + k

p|V |
∫

V
B−(x)dμ + |V |

pk

∫

V
A(x)dμ. (5.20)

The right hand side of (5.20) is non-positive if and only if
∫

V
A(x)dμ ≤ |h|p

2|V | 2p
k

2
p +1 − k2

|V |2
∫

V
B−(x)dμ =: η(k).

One can easily check that

max
k>0

η(k) = η(k�) =
(
p + 2

4

|h|
∫
V B−(x)dμ

) p+2
p−2 |h|(p − 2)|V | 2p

p−2

4
,

where

k� =
(
p + 2

4

|h||V |2− 2
p

∫
V B−(x)dμ

) p
p−2

. (5.21)

Henceby the assumption (2.5),wededuce that�ε
k�

≤ Jε(uk) ≤ 0 for any ε > 0. Furthermore,
by (5.16) and the fact p > 2, we have

k� > min

⎧
⎪⎨

⎪⎩

(
|h||V |2− 2

p

∫
V B−(x)dμ

) p
p−2

, 1

⎫
⎪⎬

⎪⎭
≥ k�.

This finishes the proof of Lemma 5.5. ��
Remark 5 By (5.13) and (5.20), we further obtain that

Jε(uk� ) ≤ − k�

p|V |
∫

V
B+(x)dμ.
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Since maxx∈V B(x) > 0, we get

�ε
k�

≤ − 1

p|V | min

⎧
⎪⎨

⎪⎩

(
|h||V |2− 2

p

∫
V B−(x)dμ

) p
p−2

, 1

⎫
⎪⎬

⎪⎭

∫

V
B+(x)dμ < 0, for any ε > 0.

Proposition 5.6 Suppose that the assumptions (a), (b) and (c) hold.

(a) There exists some constant � independent of ε such that �ε
k ≤ � for any ε > 0 and

k ≥ k�.
(b) There exists some k� sufficiently large and independent of ε such that �ε

k < 0 for any
k ≥ k�.

Proof (a) By the same arguments of the proof ofLemma5.4,we can define a positive function
v(x) = cet0χ�(x), x ∈ V , where c > 0 satisfies (5.18). Naturally, we have v(x) ≥ c for

any x ∈ V and (5.19) holds. Since ukv = k
1
p |V |− 1

p v ∈ Bk and h < 0, we deduce by
(5.7) that

Jε(ukv) ≤ 1

2
k

2
p |V |− 2

p

∫

V
|∇v|2dμ − k

p|V |
∫

V
B(x)v pdμ + |V |

pcpk

∫

V
A(x)dμ.

(5.22)

As a function of k, the right hand side of (5.22) achieves its maximum for k ≥ k�, denoted
by �.

(b) The right hand side of (5.22), being considered as a function of k, is continuous and
independent of ε. We know that the function on the right hand side of (5.22) goes to −∞
as k → +∞. Hence we can choose k� > max{k�, 1} sufficiently large such that �ε

k < 0
for any k ≥ k�. This completes the proof of Proposition 5.6.

��
Lemma 5.7 For any fixed ε > 0, �ε

k is continuous with respect to k.

Proof By (5.12) and (5.13), we see that �ε
k is well-defined for any k > 0. Now we need to

check that for any k > 0 and any sequence {k j } with k j → k as j → +∞, it holds that

lim
j→+∞ �ε

k j = �ε
k . (5.23)

By Proposition 5.2, we suppose that �ε
k and �ε

k j
are achieved by u ∈ Bk and u j ∈ Bk j

respectively, furthermore, u and u j are positive on V .
Next we choose a sequence of positive numbers {t j } such that t j u ∈ Bk j . Then we have

k
1
p
j = ‖t j u‖L p(V ) = t j k

1
p , which implies that t j → 1 as j → +∞. Therefore, we get

�ε
k j ≤ Jε(t j u) = t2j

2

∫

V

(|∇u|2 + hu2
)
dμ − t pj

p

∫

V
B(x)u pdμ

+ 1

p

∫

V
A(x)

(
t2j u

2 + ε
)− p

2 dμ,

which yields that

lim sup
j→+∞

�ε
k j ≤ Jε(u). (5.24)
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On the other hand, since ‖u j‖L p(V ) = k
1
p
j → k

1
p as j → +∞, by Lemma 3.1-(b), there

exists some ũ ∈ VR such that up to a subsequence (still denoted by {u j }), u j (x) → ũ(x) as

j → +∞ for any x ∈ V . Thus, it holds that ‖ũ‖L p(V ) = lim
j→+∞ ‖u j‖L p(V ) = k

1
p and then

ũ ∈ Bk . Therefore,

Jε(u) ≤ Jε(̃u) = lim
j→+∞Jε(u j ) = lim

j→+∞ �ε
k j . (5.25)

Combining (5.24) and (5.25), we conclude that lim
j→+∞ �ε

k j
= Jε(u) = �ε

k . This gives (5.23).

��

5.3 Proof of Theorem 2.5

Before giving the proof of Theorem 2.5, we first introduce the quantity λB,γ .

Lemma 5.8 Suppose that the assumption (c) holds. For any γ > 0, we set

λB,γ = inf
{
‖∇u‖2L2(V )

‖u‖−2
L2(V )

| u ∈ C(B, γ )
}

, (5.26)

where

C(B, γ ) =
{
u ∈ W 1,2(V ) | u ≥ 0 on V , ‖u‖L p(V ) = 1,

∫

V
B−(x)u pdμ

= γ

∫

V
B−(x)dμ

}
. (5.27)

Then λB,γ is monotone decreasing with respect to γ .

Proof We split the proof into three steps.
Step 1.We first consider the following minimizing problem

λ′
B,γ = inf

{
‖∇u‖2L2(V )

‖u‖−2
L2(V )

| u ∈ C′(B, γ )
}

,

where

C′(B, γ ) = {
u ∈ W 1,2(V ) | u ≥ 0 on V , ‖u‖L p(V ) = 1,
∫

V
B−(x)u pdμ ≤ γ

∫

V
B−(x)dμ

}
.

Choose any x0 ∈ � := {x ∈ V | B(x) > 0} and denote uγ (x) = μ(x0)
− 1

p δx0 . Then
uγ ∈ C′(B, γ ). This implies that C′(B, γ ) �= ∅ and thus λ′

B,γ is finite. By the definition of
C′(B, γ ), if γ1 ≤ γ2, then C′(B, γ1) ⊆ C′(B, γ2), and hence λ′

B,γ2
≤ λ′

B,γ1
. This yields that

λ′
B,γ ismonotone decreasingwith respect to γ . In the sequel,we shall prove thatλ′

B,γ = λB,γ .
By the fact that C(B, γ ) ⊆ C′(B, γ ), we find λ′

B,γ ≤ λB,γ . So it remains to check that
λ′
B,γ ≥ λB,γ .

Step 2. λ′
B,γ is achieved by some u ∈ C(B, γ ). In fact, suppose that {u j } ⊆ C′(B, γ ) is a

minimizing sequence of λ′
B,γ , then {u j } is nonnegative and bounded in L p(V ). By Lemma

3.1-(b), we assume that up to a subsequence (still denoted by {u j }),
u j (x) → u(x), as j → +∞, ∀ x ∈ V .
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Thus one can check that u ∈ C′(B, γ ), and then λ′
B,γ is achieved by u. We claim that

u ∈ C(B, γ ). Otherwise, there exists some constant κ > 0 such that
∫

V
B−(x)(u + κ)pdμ = γ

∫

V
B−(x)dμ.

Since (u + κ)‖u + κ‖−1
L p(V ) ∈ C′(B, γ ), we have

∥
∥
∥
∥
∥
∇
(

u + κ

‖u + κ‖L2(V )

)∥∥
∥
∥
∥

2

L2(V )

∥
∥
∥
∥
∥

u + κ

‖u + κ‖L2(V )

∥
∥
∥
∥
∥

−2

L2(V )

=
‖∇(u + κ)‖2

L2(V )

‖u + κ‖2
L2(V )

<
‖∇u‖2

L2(V )

‖u‖2
L2(V )

.

Contradiction arises. Hence u ∈ C(B, γ ). This also yields that C(B, γ ) �= ∅.
Step 3. By the definition of λB,γ , we conclude that

λ′
B,γ = ‖∇u‖2L2(V )

‖u‖−2
L2(V )

≥ λB,γ .

This finishes the proof of Lemma 5.8. In addition, λB,γ is achieved by the u as well. ��
Lemma 5.9 Suppose that the assumption (c) holds. Then λB,γ ≤ λB for any γ > 0. In
particular,

lim
γ→0+ λB,γ = λB .

Proof For any u ∈ C(B), by (5.4) and the assumption (c), we have
∫

V
u pdμ > 0,

∫

V
B−(x)u pdμ = 0.

We choose some constant c > 0 such that ‖cu‖L p(V ) = 1. This implies that cu ∈ C′(B, γ ).
Therefore, we get that

λ′
B,γ ≤ ‖∇(cu)‖2L2(V )

‖cu‖−2
L2(V )

= ‖∇u‖2L2(V )
‖u‖−2

L2(V )
.

Taking the infimum with respect to u on both sides over the set C(B), we have λ′
B,γ ≤ λB .

Together with the fact λ′
B,γ = λB,γ we get λB,γ ≤ λB .

Next we shall verify that λB = limγ→0+ λB,γ . Suppose this is not true, then there is some
ε0 > 0 such that for any γ0 > 0, there exists γ < γ0 satisfying λB −λB,γ ≥ ε0. If γ0 → 0+,
then γ → 0+. For this sequence {λB,γ }γ , we assume that λB,γ is achieved by vγ ∈ C(B, γ ).
Thus we get

‖∇vγ ‖2L2(V )
‖vγ ‖−2

L2(V )
≤ λB,γ ≤ λB − ε0.

Using ‖vγ ‖L p(V ) = 1 and the above inequality, we find that {vγ }γ is bounded in W 1,2(V ).
Then by Lemma 3.1-(b), up to a subsequence (still denoted by {vγ }γ ), there exists v ∈
W 1,2(V ) such that vγ (x) → v(x) as γ → 0+, for any x ∈ V . Thus we have

∫

V
v pdμ = lim

γ→0+

∫

V
v p
γ dμ = 1,

and
∫

V
B−(x)v pdμ = lim

γ→0+

∫

V
B−(x)v p

γ dμ = lim
γ→0+ γ

∫

V
B−(x)dμ = 0.
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This implies that v ∈ C(B). Therefore, we have

λB ≤ ‖∇v‖2L2(V )
‖v‖−2

L2(V )
= lim

γ→0+ ‖∇vγ ‖2L2(V )
‖vγ ‖−2

L2(V )
≤ λB − ε0.

Contradiction arises. This finishes the proof of Lemma 5.9. ��
Lemma 5.10 Suppose that the assumptions (a), (b) and (c) hold. Then there exists γ0 ∈
(0, 4p

(p+2)|V | ) sufficiently small such that

δ := λB,γ0 + h

2
>

3

8
(λB + h). (5.28)

For this δ, we denote by

ϒ1 = min

{
|h||V |1− 2

p

2
,

δ

S21 (4δ + 2|h| + 1)

}

, (5.29)

where S1 is the Sobolev embedding constant (see (3.1) with h(x) ≡ 1 and q = p), and set

ϒ2 := γ0

4|h||V |1− 2
p

ϒ1. (5.30)

If

max
x∈V B(x) < ϒ2

∫

V
B−(x)dμ, (5.31)

then there exists some k∗ independent of ε such that Jε(u) > 1
2ϒ1k

2
p∗ for any ε > 0 and

u ∈ Bk∗ . In particular, �
ε
k∗ > 0 for any ε > 0, and k� < k∗ < k�.

Proof By Lemma 5.9, there exists some γ0 ∈ (0, 4p
(p+2)|V | ) small enough such that

0 ≤ λB − λB,γ0 <
1

4
(λB − |h|).

This gives (5.28). We set

k∗ =
(

p|h||V |1− 2
p

γ0
∫
V B−(x)dμ

) p
p−2

. (5.32)

It is easy to check that k∗ > k� by (5.21). Now we assume that k ≥ k∗, and decompose Jε

as

Jε(u) = G(u) − 1

p

∫

V
B+(x)|u|pdμ + 1

p

∫

V
A(x)

(
u2 + ε

)− p
2 dμ, (5.33)

where

G(u) = 1

2
‖∇u‖2L2(V )

+ h

2
‖u‖2L2(V )

+ 1

p

∫

V
B−(x)|u|pdμ. (5.34)

For any u ∈ Bk , we consider the following two cases:
Case 1. Suppose that

∫

V
B−(x)u pdμ ≥ γ0k

∫

V
B−(x)dμ.
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Since k ≥ k∗, by the Hölder’s inequality (see (5.10)) and (5.32), we have

G(u) ≥ h

2
‖u‖2L2(V )

+ γ0k

p

∫

V
B−(x)dμ

≥ |h|
2
k

2
p

(
2γ0

∫
V B−(x)dμ

|h|p k1−
2
p − |V |1− 2

p

)

≥ |h|
2

|V |1− 2
p k

2
p . (5.35)

Case 2. Suppose that
∫

V
B−(x)u pdμ < γ0k

∫

V
B−(x)dμ.

Since u ∈ Bk , k
− 1

p u ∈ C′(B, γ0). By the proof of Lemma 5.8 and the definition of λB,γ0 , it
holds

λB,γ0 = λ′
B,γ0

≤ ‖∇(k− 1
p u)‖2L2(V )

‖k− 1
p u‖−2

L2(V )
= ‖∇u‖2L2(V )

‖u‖−2
L2(V )

. (5.36)

We rewrite (5.34) as

‖u‖2L2(V )
= 2

|h|
(
1

2
‖∇u‖2L2(V )

+ 1

p

∫

V
B−(x)u pdμ − G(u)

)
. (5.37)

Therefore, by (5.28) and (5.36), we get

G(u) ≥ 1

2
(λB,γ0 + h)‖u‖2L2(V )

+ 1

p

∫

V
B−(x)u pdμ

≥ δ‖u‖2L2(V )
= δ

2|h| + 1
‖u‖2L2(V )

+ 2|h|δ
2|h| + 1

‖u‖2L2(V )

≥ δ

2|h| + 1
‖u‖2L2(V )

+ 4δ

(2|h| + 1)

(
1

2
‖∇u‖2L2(V )

− G(u)

)
. (5.38)

We solve inequality (5.38) with respect to G(u), and then deduce by (3.1) that

G(u) ≥ δ

4δ + 2|h| + 1

(‖u‖2L2(V )
+ 2‖∇u‖2L2(V )

) ≥ δ

4δ + 2|h| + 1
‖u‖2W 1,2(V )

≥ δ

S21 (4δ + 2|h| + 1)
‖u‖2L p(V ) = δ

S21 (4δ + 2|h| + 1)
k

2
p . (5.39)

In any case, it follows from (5.29), (5.35) and (5.39) that G(u) ≥ ϒ1k
2
p . Thus, we deduce

that for any u ∈ Bk and any k ≥ k∗,

Jε(u) ≥ ϒ1k
2
p − k

p
max
x∈V B(x).

Applying (5.30) and (5.31), one can easily check that
(

pϒ1
2maxx∈V B(x)

) p
p−2

> k∗. Then for

any u ∈ Bk∗ , we have Jε(u) > 1
2ϒ1k

2
p∗ . Therefore, �ε

k∗ > 0 for any ε > 0. By Proposition
5.6-(b), we see k∗ < k�. This finishes the proof of Lemma 5.10. ��
Proof of Theorem 2.5 For sufficiently small ε > 0, there will be k� and k� such that k� > k�

and �ε
k�

≤ 0 while �ε
k�

> 0. In fact, by Lemma 5.3, there exists some k� > 0 independent
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of ε such that �ε
k�

> 0 for any ε ≤ k�. By Lemma 5.5, there exists some k� > 0 independent
of ε such that �ε

k�
≤ 0 for any ε > 0. In addition, k� > k�. In the sequel, we assume ε ≤ k�.

Let k∗ be defined as in Lemma 5.10 satisfying that �ε
k∗ > 0 for any ε > 0. Fix ε > 0 and

we consider the minimizing problem

�̂ε := inf
u∈Dk

Jε(u) = min
k�≤k≤k∗

�ε
k,

where

Dk =
{
u ∈ W 1,2(V ) | u ≥ 0 on V , k� ≤ ‖u‖p

L p(V ) ≤ k∗
}

.

For any k ∈ [k�, k∗] and any ε > 0, by (5.12) and Proposition 5.6-(a), we see that �ε
k is

uniformly bounded, thus �̂ε is well-defined. By Proposition 5.2, each �ε
k is achieved by a

positive function. Therefore, by Lemma 5.7, we conclude that �̂ε is achieved by a positive
function, denoted by u(ε) ∈ Dk . In another way, similar to the arguments of Proposition 5.2,
one can directly prove that �̂ε is achieved by some positive function u(ε) ∈ Dk .

By Lemma 5.5 and Remark 5, we find that

�̂ε ≤ �ε
k�

< 0. (5.40)

Namely, the energy �̂ε = Jε(u(ε)) is strictly negative. Let ‖u(ε)‖p
L p(V ) = k(ε) ∈ [k�, k∗].

Notice that both�ε
k�
and�ε

k∗ are positive, we see k
(ε) ∈ (k�, k∗). In addition, u(ε) is a positive

solution to the asymptotic Eq. (5.6).

Since {u(ε)}ε is bounded in L p(V ) by the constant k
1
p∗ , hence bounded in L∞(V ), one can

easily deduce by Lemma 3.1-(b) that up to a subsequence, denoted by {u(ε j )} j , we have
u(ε j )(x) → u(x), as j → +∞, ∀ x ∈ V .

Here u ∈ L∞(V ) is nonnegative. Since u(ε j ) is a positive solution to (5.6) with ε = ε j ,
by the same arguments of Remark 4, we conclude that {u(ε j )} j is uniformly bounded from
below. Thus, u is positive on V . Letting j → +∞ in (5.6) with ε = ε j , we conclude that u
is a positive solution to (5.1), and the energy is strictly negative by (5.40). This finishes the
proof of Theorem 2.5. ��

6 Heat flow and topological degree for the null case

In the last section, we address the null case

− �u = Bu p−1 + Au−p−1 on V , (6.1)

where p > 2, A(x) > 0 and B(x) < 0 on V unless otherwise specified.

Remark 6 Suppose that u is a positive solution to (6.1). Letting x0 ∈ V be a minimum point
of u on V , then we get

0 ≥ −�u(x0) = B(x0)u(x0)
p−1 + A(x0)u(x0)

−p−1,

which implies that

u(x) ≥ u(x0) ≥
(

A(x0)

−B(x0)

) 1
2p ≥

(
min
x∈V

A(x)

−B(x)

) 1
2p

, ∀ x ∈ V . (6.2)
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Similarly, we denote by u(x1) = maxx∈V u(x) and then have

0 ≤ −�u(x1) = B(x1)u(x1)
p−1 + A(x1)u(x1)

−p−1,

which yields that

u(x) ≤ u(x1) ≤
(

A(x1)

−B(x1)

) 1
2p ≤

(
max
x∈V

A(x)

−B(x)

) 1
2p

, ∀ x ∈ V . (6.3)

Hence by (6.2) and (6.3), we obtain the a-priori estimate for the positive solutions to (6.1) as
the following

u(x) ≡
(
min
x∈V

A(x)

−B(x)

) 1
2p ≤ u(x) ≤

(
max
x∈V

A(x)

−B(x)

) 1
2p ≡ u(x), ∀ x ∈ V . (6.4)

One can easily check that u and u are sub- and super-solutions to (6.1) respectively. Therefore,
we shall apply the sub- and super-solution method (similar to Theorem 2.2) to find solutions
to (6.1). Namely, we can find some minimizer ũ of the energy functional J in N = {u ∈
W 1,2(V ) | u ≤ u(x) ≤ u}, where

J (u) = 1

2

∫

V
|∇u|2dμ − 1

p

∫

V
B(x)u pdμ + 1

p

∫

V
A(x)u−pdμ.

Then, we can show ũ is indeed a solution to (6.1). To avoid duplication, we turn to utilize
heat-flowmethod to derive the existence result in the sequel, in which sub- and super-solution
method is also involved for heat flow.

Example 3 Thanks to (6.4), if −A(x)/B(x) ≡ C for some constant C > 0, then (6.1) has

only the constant solution u(x) ≡ C
1
2p on V .

Inspired by [17, Theorem 1], we introduce the heat flow for (6.1)
{
ut − �u = g(x, u), in V × (0,+∞),

u(x, 0) = u0(x), on V ,
(6.5)

where u0(x) > 0 on V is an arbitrary function and g(x, u) = B(x)u p−1 + A(x)u−p−1

with p > 2. We say u(x, t) is a global solution to (6.5) with initial data u0 provided that
u(x, t) ∈ C1

([0,+∞)
)
for any fixed x ∈ V , u(x, t) ∈ VR for any fixed t ∈ [0,+∞), and

u(x, 0) = u0(x) on V . Similarly, the definition of local solutions only shifts the interval
[0,+∞) as [0, T ] for T > 0. Some similar notations are given in Subsection 6.1.

Definition 6.1 Suppose that ϕ0(x, t), ψ0(x, t) ∈ C1
([0, T ]) for any fixed x ∈ V , where

T > 0 is given.

(a) We call the bounded function ϕ0(x, t) > 0 a sub-solution to (6.5) in V × [0, T ] if it
satisfies

{
∂tϕ0 − �ϕ0 − g(x, ϕ0) ≤ 0, in V × (0, T ],
ϕ0(x, 0) ≤ u0(x), on V .

(b) We call the bounded function ψ0(x, t) > 0 a super-solution to (6.5) in V × [0, T ] if it
satisfies

{
∂tψ0 − �ψ0 − g(x, ψ0) ≥ 0, in V × (0, T ],
ψ0(x, 0) ≥ u0(x), on V .
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Now we denote functions ϕ0(x, t) and ψ0(x, t) in V × [0,+∞) by

ϕ0(x, t) := κ1u(x), ψ0(x, t) := κ2u(x), for (x, t) ∈ V × [0,+∞), (6.6)

where u(x) and u(x) are given in (6.4), the constants κ1 ∈ (0, 1) and κ2 ∈ [1,+∞) are
chosen such that

ϕ0(x, t) ≤ min
x∈V u0(x), ψ0(x, t) ≥ max

x∈V u0(x), for (x, t) ∈ V × [0,+∞).

Then one can easily check that ϕ0(x, t) > 0 and ψ0(x, t) > 0 are sub- and super-solutions
to (6.5) in V × [0, T ] for any T > 0 respectively. Set �1 = ϕ0 and �2 = ψ0. We define a
map

F = (∂t − � + λ)−1(g(x, ·) + λ)(·) : V × [0, T ] → V × [0, T ], w �→ v,

satisfying that
{

∂tv − �v + λv = g(x, w) + λw, in V × (0, T ],
v(x, 0) = u0(x), on V ,

(6.7)

where λ = λ(A, B, u0) > 0 is a constant large enough satisfying that g(x, u) + λu is
increasing with respect to u ∈ [�1,�2]. After that, we can define two sequences {ϕk} and
{ψk} as

ϕk = Fϕk−1, ψk = Fψk−1, for k ≥ 1. (6.8)

In any finite interval of t , we shall prove that {ϕk} and {ψk} are monotone increasing and
decreasing respectively, and their limiting functions are identical. This establishes the short-
time existence of heat-flow to (6.5). The global existence of u(x, t), (x, t) ∈ V × [0,+∞)

follows by continuation. Finally, we need to consider the asymptotic behavior of u(x, t) as
t → +∞. In order to guarantee the existence of v(x, t) in (6.7), we establish the existence
result for general heat equation on connected finite graph.

6.1 Existence, uniqueness andmaximum principle for the general heat equation

In this part, we discuss the general heat equation
{
ut − �u + c(x, t)u = f (x, t), in V × (0,+∞),

u(x, 0) = u0(x), on V ,
(6.9)

where u0(x) ∈ VR is an arbitrary function, c(x, t) and f (x, t) are C∞([0,+∞); VR
)

functions, that is, c(x, ·), f (x, ·) ∈ C∞([0,+∞)
)
for any x ∈ V , and c(·, t), f (·, t) ∈ VR

for any t ∈ [0,+∞). Thus, we associate u(x, t) with a map

u : [0,+∞) → VR, [u(t)](x) := u(x, t), x ∈ V , 0 ≤ t < +∞.

Similarly, we define
{
f : [0,+∞) → VR, [f(t)](x) := f (x, t), x ∈ V , 0 ≤ t < +∞,

c : [0,+∞) → VR, [c(t)](x) := f (x, t), x ∈ V , 0 ≤ t < +∞.

Definition 6.2 For any c(x, t), f (x, t) ∈ C
([0,+∞); VR

)
, we say a function u ∈

C1
([0,+∞); VR

)
is a solution to (6.9) provided that
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(a) [u(0)](x) = u0(x) for any x ∈ V ;
(b) ∂t [u(t)](x)−�[u(t)](x)+[c(t)](x)[u(t)](x) = [f(t)](x) for any (x, t) ∈ V ×(0,+∞).

Theorem 6.3 Let G = (V , E) be a connected finite graph. Suppose that c(x, t), f (x, t) ∈
C∞([0,+∞); VR

)
, then (6.9) admits a unique solution u ∈ C∞([0,+∞); VR

)
.

Proof Supposing that V = {xi }1≤i≤m , we express any C∞([0,+∞); VR
)
function u(x, t)

as

u(x, t) =
m∑

i=1

di (t)δxi (x), (6.10)

where δxi is defined as in (2.1), the coefficient di (t) belongs toC
∞([0,+∞)

)
for 1 ≤ i ≤ m.

Thus it is equivalent to seeking for a function u(x, t) of the form (6.10) satisfying that

dk(0) =
m∑

i=1

di (0)δxi (xk) = u(xk, 0) = u0(xk), 1 ≤ k ≤ m, (6.11)

and

d ′
k(t) − 1

μ(xk)

∑

i �=k

ωxk xi

(
di (t) − dk(t)

)+ c(xk, t)dk(t) = f (xk, t), t ∈ (0,+∞),

1 ≤ k ≤ m. (6.12)

Applying the existence and uniqueness results of ordinary differential equations (see [24]),
we obtain a unique C∞([0,+∞),Rm) function d(t) = (d1(t), · · · , dm(t)), t ∈ [0,+∞)

verifying (6.11) and (6.12). This completes the proof of Theorem 6.3. ��
Remark 7 (a) In Theorem 6.3, if c(x, t), f (x, t) ∈ C∞([0, T ]; VR

)
for some T > 0, then

(6.9) admits a unique solution u ∈ C∞([0, T ]; VR
)
.

(b) By Theorem 6.3, for any T > 0, we conclude that {ϕk} and {ψk} given by (6.7) and (6.8)
are well-defined. Here we refer the readers to the arguments of Step 1 in the proof of
Theorem 2.6.

Next we present the maximum principle for the heat equation on graph.

Lemma 6.4 (Maximum principle) Suppose that T > 0 and u(x, t) ∈ C1
([0, T ]; VR

)

satisfies
{
ut − �u = f (x, t), in V × (0, T ],
u(x, 0) = Q(x), on V ,

where f (x, t) ∈ C
([0, T ]; VR

)
. Then

(a) if f (x, t) ≤ 0 in V × [0, T ], we have maxV×[0,T ] u(x, t) = maxx∈V Q(x);
(b) if f (x, t) ≥ 0 in V × [0, T ], we have minV×[0,T ] u(x, t) = minx∈V Q(x).

Remark. The existence of u(x, t) ∈ C1
([0, T ]; VR

)
is guaranteed by the same arguments of

Theorem 6.3.

Proof (a) We first assume that f (x, t) < 0 in V ×[0, T ] and prove this conclusion. Suppose
that

max
V×[0,T ] u(x, t) = u(x0, t0), for some x0 ∈ V and 0 < t0 ≤ T .

123



  138 Page 36 of 45 L. Cui et al.

Then−�u(x0, t0) ≥ 0. If 0 < t0 < T , then ut (x0, t0) = 0; if t0 = T , then ut (x0, t0) ≥ 0.
Thus, we have

0 ≤ ut (x0, t0) − �u(x0, t0) = f (x0, t0) < 0.

Contradiction arises. Therefore, t0 = 0 and the conclusion holds. For the general case
f (x, t) ≤ 0 in V × [0, T ], we denote by uε(x, t) = u(x, t) − εt for ε > 0. Direct
computation shows that

{
uε
t − �uε = f (x, t) − ε < 0, in V × (0, T ],

uε(x, 0) = Q(x), on V .

As a consequence, we deduce that

max
V×[0,T ] u

ε(x, t) = max
x∈V Q(x),

which implies that maxV×[0,T ] u(x, t) = maxx∈V Q(x). In fact, one can check that

max
x∈V Q(x) = max

V×[0,T ] u
ε(x, t) ≤ max

V×[0,T ] u(x, t) = max
V×[0,T ](u

ε(x, t) + εt)

≤ max
V×[0,T ] u

ε(x, t) + εT = max
x∈V Q(x) + εT → max

x∈V Q(x),

as ε → 0. This finishes the proof of (a).
(b) One can easily get it by applying (a) to −u.

��
Lemma 6.5 (Maximum principle) Suppose that T > 0 and u(x, t) ∈ C1

([0, T ]; VR
)

satisfies
{
ut − �u + c(x, t)u = f (x, t), in V × (0, T ],
u(x, 0) = Q(x), on V ,

where f (x, t), c(x, t) ∈ C
([0, T ]; VR

)
and c(x, t) ≥ 0 in V × [0, T ]. Then

(a) if f (x, t) ≤ 0 in V × [0, T ], we have maxV×[0,T ] u(x, t) ≤ maxx∈V Q+(x);
(b) if f (x, t) ≥ 0 in V × [0, T ], we have minV×[0,T ] u(x, t) ≥ −maxx∈V Q−(x);
(c) if f (x, t) = 0 in V × [0, T ], we have maxV×[0,T ] |u(x, t)| = maxx∈V |Q(x)|.
Proof One can prove it similarly to Lemma 6.4. ��

6.2 Heat-flowmethod for EL equation

We give the proof of Theorem 2.6.

Proof of Theorem 2.6 For any T > 0, we see that ϕ0(x, t) and ψ0(x, t), defined in (6.6),
are sub- and super-solutions to (6.5), respectively, in V × [0, T ]. Let {ϕk} and {ψk} be the
sequences defined by (6.7) and (6.8). Choose λ = λ(A, B, u0) > 0 large enough such that

∂g(x, u)

∂u
+ λ > 0 with respect to u ∈ [�1,�2]. (6.13)

For brevity, we split the proof into three steps.
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Step 1. We establish the short-time existence result for heat flow (6.5). To this end, we first
check that the sequences {ϕk} and {ψk} are monotone increasing and decreasing respectively.
Therefore, there exists a unique u∗ such that u∗ = Fu∗ and

lim
k→+∞ ϕk = u∗ = lim

k→+∞ ψk . (6.14)

In other words, u∗ is a positive solution to
{

∂t u
∗ − �u∗ = g(x, u∗), in V × (0, T ],

u∗(x, 0) = u0(x), on V .
(6.15)

Proof of Step 1 We claim that
{

ϕk, ψk ∈ C∞([0, T ]; VR
)
are well-defined for any k ≥ 1,

ϕ0 ≤ ϕ1 ≤ · · · ≤ ϕk ≤ · · · ≤ ψk ≤ · · · ≤ ψ1 ≤ ψ0 in V × [0, T ]. (6.16)

In fact, by (6.7) and (6.8), {ϕk} and {ψk} satisfy
{

∂tϕk+1 − �ϕk+1 + λϕk+1 = g(x, ϕk) + λϕk, in V × (0, T ],
ϕk+1(x, 0) = u0(x), on V ,

(6.17)

and
{

∂tψk+1 − �ψk+1 + λψk+1 = g(x, ψk) + λψk, in V × (0, T ],
ψk+1(x, 0) = u0(x), on V .

(6.18)

By Theorem 6.3, ϕ1 ∈ C∞([0, T ]; VR
)
is well-defined. Since ϕ0 is a sub-solution to (6.5),

combining (6.17) with k = 0, we have
{

∂t (ϕ1 − ϕ0) − �(ϕ1 − ϕ0) + λ(ϕ1 − ϕ0) ≥ 0, in V × (0, T ],
(ϕ1 − ϕ0)(x, 0) ≥ 0, on V .

Applying Lemma 6.5-(b), we have ϕ1 ≥ ϕ0 in V × [0, T ]. Again by Theorem 6.3, ψ1 ∈
C∞([0, T ]; VR

)
is well-defined. Sinceψ0 is a super-solution to (6.5), combining (6.18) with

k = 0, we deduce that ψ1 ≤ ψ0 in V × [0, T ] via Lemma 6.5-(a). In addition, by (6.17) and
(6.18) with k = 0, we have

⎧
⎪⎨

⎪⎩

∂t (ϕ1 − ψ1) − �(ϕ1 − ψ1) + λ(ϕ1 − ψ1)

= g(x, ϕ0) − g(x, ψ0) + λ(ϕ0 − ψ0) ≤ 0, in V × (0, T ],
(ϕ1 − ψ1)(x, 0) = 0, on V ,

via (6.13) and ϕ0 ≤ ψ0 in V × [0, T ]. Thus by Lemma 6.5-(a), we deduce that ϕ1 ≤ ψ1 in
V × [0, T ].

Inductively, we assume that
{

ϕi , ψi ∈ C∞([0, T ]; VR
)
are well-defined for 1 ≤ i ≤ k,

ϕ0 ≤ ϕ1 ≤ · · · ≤ ϕk ≤ ψk ≤ · · · ≤ ψ1 ≤ ψ0 in V × [0, T ]. (6.19)

It remains to show
{

ϕk+1, ψk+1 ∈ C∞([0, T ]; VR
)
are well-defined,

ϕk ≤ ϕk+1 ≤ ψk+1 ≤ ψk in V × [0, T ]. (6.20)
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By Theorem 6.3, ϕk+1 ∈ C∞([0, T ]; VR
)
is well-defined. Applying (6.17), we have

⎧
⎪⎨

⎪⎩

∂t (ϕk+1 − ϕk) − �(ϕk+1 − ϕk) + λ(ϕk+1 − ϕk)

= g(x, ϕk) − g(x, ϕk−1) + λ(ϕk − ϕk−1) ≥ 0, in V × (0, T ],
(ϕk+1 − ϕk)(x, 0) = 0, on V .

Here we have used (6.13) and the assumption (6.19). It follows from Lemma 6.5-(b) that
ϕk+1 ≥ ϕk in V × [0, T ]. Again by Theorem 6.3, ψk+1 ∈ C∞([0, T ]; VR

)
is well-defined.

Applying (6.13), (6.18) and (6.19), we deduce that ψk+1 ≤ ψk in V ×[0, T ]. In addition, by
(6.17) and (6.18), we get

⎧
⎪⎨

⎪⎩

∂t (ϕk+1 − ψk+1) − �(ϕk+1 − ψk+1) + λ(ϕk+1 − ψk+1)

= g(x, ϕk) − g(x, ψk) + λ(ϕk − ψk) ≤ 0, in V × (0, T ],
(ϕk+1 − ψk+1)(x, 0) = 0, on V .

Applying Lemma 6.5-(a), we have ϕk+1 ≤ ψk+1 in V × [0, T ]. Thus, (6.20) is obtained and
the claim (6.16) is proved.

By claim (6.16), we are able to define

u∗(x, t) = lim
k→+∞ ϕk(x, t), v∗(x, t) = lim

k→+∞ ψk(x, t), ∀ (x, t) ∈ V × [0, T ],

then u∗(x, t) ≤ v∗(x, t) and u∗(x, t), v∗(x, t) ∈ [�1,�2] in V × [0, T ]. Letting k → +∞
in (6.17) and (6.18), we conclude that u∗, v∗ ∈ C∞([0, T ]; VR

)
satisfy that

{
∂t u

∗ − �u∗ = g(x, u∗), in V × (0, T ],
u∗(x, 0) = u0(x), on V ,

(6.21)

and
{

∂tv
∗ − �v∗ = g(x, v∗), in V × (0, T ],

v∗(x, 0) = u0(x), on V .
(6.22)

In fact, by (6.16), (6.17) and (6.18), we see that {ϕk(x, ·)} and {ψk(x, ·)}, seen as functions
of t for any fixed x ∈ V , are uniformly bounded and equicontinuous in [0, T ]. Applying the
Arzela–Ascoli Theorem, we conclude that u∗, v∗ ∈ C

([0, T ]; VR
)
, and up to a subsequence,

still denoted by {ϕk} and {ψk}, we have
{

ϕk(x, ·) ⇒ u∗(x, ·) uniformly in [0, T ], as k → +∞;
ψk(x, ·) ⇒ v∗(x, ·) uniformly in [0, T ], as k → +∞.

Differentiating (6.17) and (6.18) with respect to t , and combining (6.16), we see that {∂tϕk}
and {∂tψk} are uniformly bounded and equicontinuous in [0, T ] as well. Again by the Arzela-
Ascoli Theorem, we conclude that there exist functions Du∗, Dv∗ ∈ C

([0, T ]; VR
)
, and up

to a subsequence, still denoted by {ϕk} and {ψk}, such that for any x ∈ V ,
{

∂tϕk(x, ·) ⇒ Du∗(x, ·) uniformly in [0, T ], as k → +∞;
∂tψk(x, ·) ⇒ Dv∗(x, ·) uniformly in [0, T ], as k → +∞.

Thus we can check that ∂t u∗ = Du∗, ∂tv∗ = Dv∗, and then u∗, v∗ ∈ C1
([0, T ]; VR

)
.

Inductively, we get u∗, v∗ ∈ C∞([0, T ]; VR
)
.
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Next, we claim that u∗(x, t) ≡ v∗(x, t) in V × [0, T ]. In fact, since u∗(x, t) ≤ v∗(x, t)
in V × [0, T ],

g(x, u∗) − g(x, v∗) = (
(p − 1)B(x)θ1(x, t)

p−2 − (p + 1)A(x)θ2(x, t)
−p−2)

(u∗(x, t) − v∗(x, t))
=: −δ(x, t)(u∗(x, t) − v∗(x, t)),

where u∗(x, t) ≤ θi (x, t) ≤ v∗(x, t) for i = 1, 2, and δ(x, t) ≥ 0 in V ×[0, T ]. Subtracting
(6.22) from (6.21), we get

{
∂t (u

∗ − v∗) − �(u∗ − v∗) + δ(x, t)(u∗ − v∗) = 0, in V × (0, T ],
(u∗ − v∗)(x, 0) = 0, on V .

(6.23)

By Lemma 6.5-(c), we conclude that u∗(x, t) ≡ v∗(x, t) in V × [0, T ], that is, (6.14) is
proved. Thus, u∗(x, t) is a positive solution to (6.15) satisfying u∗(x, t) ∈ [�1,�2] in
V × [0, T ].

The uniqueness of positive solution to (6.15) can be obtained by the same arguments of
(6.23). In fact, if û ∈ C1

([0, T ]; VR
)
is another positive solution to (6.15), then

{
∂t (u

∗ − û) − �(u∗ − û) = g(x, u∗) − g(x, û), in V × (0, T ],
(u∗ − û)(x, 0) = 0, on V ,

(6.24)

and

g(x, u∗) − g(x, û) = (
(p − 1)B(x)θ1(x, t)

p−2 − (p + 1)A(x)θ2(x, t)
−p−2)

(u∗(x, t) − û(x, t))

=: −δ(x, t)(u∗(x, t) − û(x, t)),

where θi (x, t), i = 1, 2 are between u∗ and û, and δ(x, t) ≥ 0 in V ×[0, T ]. Then by Lemma
6.5-(c), we conclude that u∗(x, t) ≡ û(x, t) in V ×[0, T ], as required. This finishes the proof
of Step 1. ��
Step 2. We establish the global existence result of the heat-flow (6.5). By Step 1, for any
T > 0, (6.5) has a unique positive solution u∗(x, t) with u∗(x, t) ∈ [�1,�2] in V × [0, T ].
Thus, we immediately obtain the global existence result. In fact, for any T0 > 0, we get the
unique positive solution u∗(x, t) in V × [0, T0]. We denote by û(x, t) the unique positive
in V × [0, T0 + 1]. Naturally, by the uniqueness, u∗(x, t) ≡ û(x, t) in V × [0, T0]. Thus,
the global existence follows by continuation in such a way. For the uniqueness of global
existence, we just consider it in any finite interval and apply the same arguments of (6.23)
or (6.24). In particular, we conclude that the global solution u(x, t) ∈ C∞([0,+∞); VR

)

satisfying

u∗(x, t) ∈ [�1,�2], for any (x, t) ∈ V × [0,+∞). (6.25)

Step 3. Finally, we analyze the asymptotic behavior of the global solution u∗(x, t) as
t → +∞. Combining (6.4), (6.6) and (6.25), we see that there exists some constant
C̃ = C̃(A, B, u0) > 0 such that

u∗(x, t) ≥ C̃, ∀ (x, t) ∈ V × [0,+∞). (6.26)

Indeed, we can choose C̃ = �1. We can verify (6.26) in another way. For any fixed T > 0,
set

u∗(x0, t0) := min
V×[0,T ] u

∗(x, t).
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If t0 = 0, then u∗(x, t) ≥ minx∈V u0(x) in V ×[0, T ]. Otherwise, 0 < t0 ≤ T , and we have

0 ≥ (∂t − �)u∗(x0, t0) = B(x0)(u
∗(x0, t0))p−1 + A(x0)(u

∗(x0, t0))−p−1,

which implies that

u∗(x0, t0) ≥
(

A(x0)

−B(x0)

) 1
2p ≥

(
min
x∈V

A(x)

−B(x)

) 1
2p = u.

Hence we conclude that

u∗(x, t) ≥ min
{
min
x∈V u0(x), u

}
≥ �1, ∀ (x, t) ∈ V × [0, T ]. (6.27)

Since T > 0 is arbitrary, this gives (6.26).
For any t > 0, multiplying (6.5) by ∂t u∗ and then integrating in V × [0, t], we have

∫ t

0

∫

V
|∂t u∗(x, s)|2dμds +

∫ t

0

∫

V
(−�u∗(x, s))∂t u∗(x, s)dμds

=
∫ t

0

∫

V
B(x)(u∗(x, s))p−1∂t u

∗(x, s)dμds

+
∫ t

0

∫

V
A(x)(u∗(x, s))−p−1∂t u

∗(x, s)dμds.

(6.28)

Now we shall compute (6.28) term by term. Using integration by parts we get that
∫

V
(−�u∗(x, s))∂t u∗(x, s)dμ =

∫

V

(u∗(x, s), ∂t u∗(x, s))dμ

=
∑

x∈V
μ(x)

1

2μ(x)

∑

y∼x

ωxy(u
∗(y, s) − u∗(x, s))(∂t u∗(y, s) − ∂t u

∗(x, s))

= 1

2

∑

x∈V
μ(x)

1

2μ(x)

∑

y∼x

ωxy∂t (u
∗(y, s) − u∗(x, s))2

= 1

2

d

dt

∫

V

(u∗)(x, s)dμ = 1

2

d

dt

∫

V
|∇u∗(x, s)|2dμ.

Hence
∫ t

0

∫

V
(−�u∗(x, s))∂t u∗(x, s)dμds = 1

2

∫

V
|∇u∗(x, t)|2dμ − 1

2

∫

V
|∇u0(x)|2dμ.

(6.29)

Notice that
∫

V
B(x)(u∗(x, s))p−1∂t u

∗(x, s)dμ =
∑

x∈V
μ(x)B(x)(u∗(x, s))p−1∂t u

∗(x, s)

= 1

p

∑

x∈V
μ(x)B(x)∂t (u

∗(x, s))p = 1

p

d

dt

∫

V
B(x)(u∗(x, s))pdμ,

which implies that
∫ t

0

∫

V
B(x)(u∗(x, s))p−1∂t u

∗(x, s)dμds = 1

p

∫

V
B(x)(u∗(x, t))pdμ
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− 1

p

∫

V
B(x)(u0(x))

pdμ. (6.30)

Similarly, we can check
∫ t

0

∫

V
A(x)(u∗(x, s))−p−1∂t u

∗(x, s)dμds = − 1

p

∫

V
A(x)(u∗(x, t))−pdμ

+ 1

p

∫

V
A(x)(u0(x))

−pdμ. (6.31)

Substituting (6.29), (6.30) and (6.31) into (6.28), we get
∫ t

0

∫

V
|∂t u∗(x, s)|2dμds + 1

2

∫

V
|∇u∗(x, t)|2dμ − 1

p

∫

V
B(x)(u∗(x, t))pdμ

+ 1

p

∫

V
A(x)(u∗(x, t))−pdμ

= 1

2

∫

V
|∇u0(x)|2dμ − 1

p

∫

V
B(x)(u0(x))

pdμ + 1

p

∫

V
A(x)(u0(x))

−pdμ.

Thus there exists some constant C = C(A, B, u0) > 0 such that for any t > 0,
∫

V
(u∗(x, t))pdμ ≤ C,

∫ t

0

∫

V
|∂t u∗(x, s)|2dμds ≤ C . (6.32)

Then by Lemma 3.1-(b), there exists a function u∞ ∈ L∞(V ) and a sequence {tk} with
tk → +∞ as k → +∞ such that

∫

V
|∂t u∗(x, tk)|2dμ → 0, u∗(x, tk) → u∞(x) in L∞(V ), as k → +∞.

Letting k → +∞ in (6.5) with t = tk , and combining (6.26), we see u∞ is a point-wise
positive solution to the EL Eq. (6.1), that is, (2.9) holds. This completes the proof of Theorem
2.6. ��

6.3 Topological degree

In this part, we calculate the topological degree for Eq. (6.1).

Lemma 6.6 Suppose that A(x) > 0, B(x) < 0 on V , and {un} is a sequence of positive
solutions to (6.1), that is,

−�un(x) = Bn(x)un(x)
p−1 + An(x)un(x)

−p−1, ∀ x ∈ V ,

where {An} and {Bn} satisfy that
lim

n→+∞ An(x) = A(x), lim
n→+∞ Bn(x) = B(x), ∀ x ∈ V .

Then up to a subsequence (still denoted by {un}), we have {un} is bounded in L∞(V ).

Proof By Remark 6, the conclusion is trivial. ��

Finally, we give the proof of Theorem 2.7.
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Proof of Theorem 2.7 Suppose that maxx∈V A(x) = A0 and minx∈V B(x) = B0. Let {ut }t ,
t ∈ [0, 1] satisfy

− �ut = (
(1 − t)B + t B0

)
u p−1
t + (

(1 − t)A + t A0
)
u−p−1
t on V . (6.33)

By Lemma 6.6 or Remark 6, {ut } is uniformly bounded in L∞(V ). We omit the details and
refer the readers to the same arguments of Theorem 2.3-(c). So the topological degree d0,A,B

is well-defined. By the homotopy invariance, we have d0,A,B = d0,A0,B0 . Noticing that by

Remark 6 or Example 3, u1(x) ≡ (−A0/B0)
1
2p is the unique positive solution to (6.33) with

t = 1. Therefore, we obtain

d0,A,B = d0,A0,B0 = sgn det
(
DA0,A0,B0(u1)

) = 1.

In fact, direct computation shows that

DA0,A0,B0 (u1) =
⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

1 + 2pA
p−2
2p

0 (−B0)
p+2
2p − ωx1 x2

μ(x1)
− ωx1 x3

μ(x1)
· · · − ωx1 xm

μ(x1)

− ωx2 x1
μ(x2)

1 + 2pA
p−2
2p

0 (−B0)
p+2
2p − ωx2 x3

μ(x2)
· · · − ωx2 xm

μ(x2)

− ωx3 x1
μ(x3)

− ωx3 x2
μ(x3)

1 + 2pA
p−2
2p

0 (−B0)
p+2
2p · · · − ωx3 xm

μ(x3)
.
.
.

.

.

.
.
.
.

. . .
.
.
.

− ωxm x1
μ(xm )

− ωxm x2
μ(xm )

− ωxm x3
μ(xm )

· · · 1 + 2pA
p−2
2p

0 (−B0)
p+2
2p

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

,

which is a strictly diagonally dominant and symmetric matrix whose principal diagonal
elements are positive. Hence it is positive definite. ��

6.4 Detailed conclusions derived by heat flow

We consider the heat flow (6.5) with B(x) ≡ −1 and A(x) ≡ 1 on V , that is,
{
ut − �u = g(x, u) := −u p−1 + u−p−1, in V × (0,+∞),

u(x, 0) = u0(x), on V ,
(6.34)

where p > 2 and u0(x) > 0 is a given function on V .

Corollary 6.7 (a) If 0 < u0(x) ≤ 1 on V , then the positive solution u(x, t) to Eq. (6.34)
satisfies that

u(x, t) → 1 uniformly on V , as t → +∞.

(b) If 0 < u0(x) ≤ L on V for some L > 1, then the positive solution u(x, t) to Eq. (6.34)
satisfies that

u(x, t) → 1 uniformly on V , as t → +∞.

Proof (a) By Theorem 2.6, the global solution u(x, t) ∈ C∞([0,∞); VR
)
is obtained

for (6.34). For any T > 0, let (x ′, t ′) ∈ V × [0, T ] be such that u(x ′, t ′) =
maxV×[0,T ] u(x, t). Thus either

(i) t ′ = 0, then u(x, t) ≤ maxx∈V u0(x) ≤ 1 in V × [0, T ]; or
(ii) t ′ > 0, then ∂t u(x ′, t ′) ≥ 0, −�u(x ′, t ′) ≥ 0, and hence −(u(x ′, t ′)

)p−1 +
(
u(x ′, t ′)

)−p−1 ≥ 0, which implies that u(x ′, t ′) ≤ 1.
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Combining the above arguments and (6.27), we get minx∈V u0(x) ≤ u(x, t) ≤ 1 in
V × [0, T ].
Next, we check that u(x, t) → 1 uniformly on V as t → +∞. We define
⎧
⎨

⎩

umin(t) = min
x∈V u(x, t) = min

{
u(xi , t) | 1 ≤ i ≤ m

} = u(xt , t), for t ∈ (0,+∞),

umax(t) = max
x∈V u(x, t) = max

{
u(xi , t) | 1 ≤ i ≤ m

} = u(x ′
t , t), for t ∈ (0,+∞),

where xt , x ′
t ∈ V . Then the upper derivatives of umin and umax are given by

D+umin /max(t) = lim sup
h→0+

umin /max(t + h) − umin /max(t)

h
, ∀ t > 0.

One can check that umin is locally Lipschitz continuous in (0,+∞) since u(x, t) ∈
C∞([0,+∞); VR

)
.Without loss of generality, wemay assume that umin is differentiable

in (0,+∞). If there exists some ε0 > 0 such that umin(t) ≤ 1 − ε0 for any t > 0, then
we have

d

dt
umin ≥ −u p−1

min + u−p−1
min ≥ (− (1 − ε0)

p−2 + (1 − ε0)
−p−2)umin ≥ C(ε0)umin > 0,

which yields that umin(t) ≥ exp
(
C(ε0)t

)
umin(0) → +∞ as t → +∞. Contradiction

arises. Thus for any ε > 0 and any x ∈ V , there exists some T = T (ε) > 0 such that
u(x, t) ≥ 1 − ε whenever t > T . We conclude that u(x, t) → 1 uniformly on V as
t → +∞.

(b) By (6.27), the global solution u(x, t) ∈ C∞([0,+∞); VR
)
to (6.34) satisfies

u(x, t) ≥ min
x∈V u0(x) > 0, for any (x, t) ∈ V × [0,+∞).

For any T > 0, let (x ′, t ′) ∈ V × [0, T ] be such that u(x ′, t ′) = maxV×[0,T ] u(x, t).
Thus, either

(i) t ′ = 0, then u(x ′, t ′) = maxx∈V u0(x); or
(ii) t ′ > 0, then ∂t u(x ′, t ′) ≥ 0, −�u(x ′, t ′) ≥ 0 and hence −(u(x ′, t ′)

)p−1 +
(
u(x ′, t ′)

)−p−1 ≥ 0, which implies that u(x ′, t ′) ≤ 1.

Therefore, if maxx∈V u0(x) ≤ 1, we get u(x, t) ≤ 1 in V × [0, T ], and the conclusion
(b) holds directly by (a). So, without loss of generality, we assume that maxx∈V u0(x) ∈
(1, L]. In addition, if umax(t0) ≤ 1 for some t0 > 0, then we can derive that umax(t) ≤ 1
for any t ≥ t0 by repeating almost the same argument. Then using conclusion (a) we
get the desired conclusion. Therefore, without loss of generality we may assume that
1 < umax(t) ≤ L for any t ∈ [0,+∞).
Notice that u(x) ≡ 1 is indeed the positive solution to (6.1) with B(x) ≡ −1 and
A(x) ≡ 1 on V . Then by Theorem 2.6 and the same arguments of (a), it remains to show
that for any x ∈ V ,

u(x, t) → 1, as t → +∞. (6.35)

In fact, if there exists some ε0 > 0 such that umin(t) ≤ 1−ε0 for all t > 0, then we have

d

dt
umin ≥ C(ε0)umin > 0,

which implies that umin(t) ≥ exp
(
C(ε0)t

)
umin(0) → +∞ as t → +∞. Contradiction

arises. Hence for any ε > 0 and any x ∈ V , there exists some T = T (ε) > 0 such
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that u(x, t) ≥ 1 − ε whenever t > T . Similarly, if there exists some ε0 > 0 such that
umax(t) ≥ 1 + ε0 for all t > 0, then we have

d

dt
umax ≤ C(ε0)umax < 0,

which implies that 1 < umax(t) ≤ exp
(
C(ε0)t

)
umax(0) → 0 as t → +∞, a contradic-

tion. Hence for any ε > 0 and any x ∈ V , there exists some T ′ = T ′(ε) > 0 such that
u(x, t) ≤ 1+ε whenever t > T ′. Combining the above two parts, we obtain (6.35). This
finishes the proof of Corollary 6.7.

��
Corollary 6.8 Suppose that −A(x)/B(x) ≡ C on V for some constant C > 0. For any
positive initial data u0(x), let u(x, t) be the unique positive solution to (6.5). Then u(x, t) →
C

1
2p uniformly on V as t → +∞.

Proof The proof of Corollary 6.8 is similar to Corollary 6.7. ��
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