TOTAL-EFFECT TEST IS SUPERFLUOUS FOR
ESTABLISHING COMPLEMENTARY MEDIATION

Yingkai Jiang¹, Xinshu Zhao², Lixing Zhu³, Jun S. Liu⁴ and Ke Deng¹

¹Tsinghua University, ²University of Macau,
³Hong Kong Baptist University and ⁴Harvard University

Abstract: Mediation, which in social science literature means that an independent variable X affects a dependent variable Y through a mediator M, is a key concept in causal inference. For establishing mediation via data analysis, there is a long debate in the literature on whether we still require the “total effect” of X on Y to be statistically significant, given the significance of both the “mediated effect” and the “direct effect” of X on Y. In the last decade, it has been shown and widely accepted that total-effect test can erroneously reject “indirect-only mediation” and “competitive mediation” and should not be applied to establish mediation of these two types. For “complementary mediation”, however, the situation becomes more complicated and no consensus is reached so far. This article provides an explicit proof that the total effect has to be statistically significant whenever mediated effect and direct effect bear the same sign and are both significant, as long as the least square estimation (LSE) and F-tests are used to estimate and test mediation effects. We also show that the similar result can be obtained when the Sobel test is used in the place of the F-test. Our results support the
growing consensus that the total-effect test should be abolished for establishing mediation.

Key words and phrases: Complementary mediation, hypothesis testing, linear model, mediation analysis, total-effect test.

1. Introduction

The concept of mediation has been broadly used in many areas of social sciences, which generally means that an independent variable X affects a dependent variable Y through a mediator M. It plays an important role in understanding causal mechanism, and is the focus of many research problems. The classic mediation model (Baron and Kenny (1986)) can be represented by the linear regression below:

\[M = i_M + aX + \varepsilon_M, \]
\[Y = i_Y + bM + dX + \varepsilon_Y, \]

where the errors are assumed to follow independent normal distributions

\[\varepsilon_M \sim N(0, \sigma_M^2), \quad \varepsilon_Y \sim N(0, \sigma_Y^2). \]

Apparently, there are two paths from X to Y in the model: a direct path “$X \rightarrow Y \mid M$” standing for the direct effect of X on Y while M is controlled (which equals to d), and an indirect path “$X \rightarrow M \rightarrow Y$” representing the
mediated effect of X on Y via the mediator M (which equals to $a \times b$). Reorganizing (1.1) and (1.2), we obtain the following linear model with X and Y only:

$$Y = i_Y^* + cX + \varepsilon_Y^*, \quad (1.3)$$

where $i_Y^* = i_Y + bi_M$, $\varepsilon_Y^* = \varepsilon_Y + b\varepsilon_M$, and $c = a \times b + d$ stands for the total effect of X on Y combining the indirect effect $a \times b$ and the direct effect d. Based on the relationship between the direct effect d and the mediated effect $a \times b$, mediation via the mediator M can be further classified into three sub-types: the competitive mediation, which happens when the direct and indirect paths bear opposite signs so that their effects offset each other; the complementary mediation, which happens when the direct and indirect paths bear the same sign so that their effects enhance each other; and the indirect-only mediation, which happens when the direct effect $d = 0$ while the indirect effect $a \times b \neq 0$.

Figure 1: Mediation. Adapted from Baron and Kenny (1986), Figure 3.

Although it is straightforward to judge the existence of mediation when
the mediation model and according parameters are precisely known (e.g., mediation exists in the classic mediation model if $a \times b \neq 0$), the task becomes challenging in practice as only data instead of parameters of the regression model are available. Baron and Kenny’s classic procedure to establish mediation (Baron and Kenny (1986)) requires the simple correlation between X and Y to be significant, in addition to the significance of the indirect effect $a \times b$. MacKinnon, Warsi and Dwyer (1995) demonstrated that the simple correlation is exactly the total effect $c = a \times b + d$ under the classic setting above. Therefore, Baron and Kenny’s classic procedure in fact required both the indirect-effect test for $a \times b$ and the total-effect test for c to be significant. While many researchers (Judd and Kenny (1981); Rose et al. (2004); Mathieu and Taylor (2006)) followed Baron and Kenny (1986) to require the total-effect test for establishing any mediation, some (Collins, Graham and Flaherty (1998); Kenny, Kashy and Bolger (1998); Rose et al. (2000); MacKinnon, Krull and Lockwood (2000); MacKinnon et al. (2002); Shrout and Bolger (2002)) recommended suspending the test for some types of mediation, leading to a long debate among researchers, especially social scientists, on principles to establish mediation via data analysis.

An obvious argument against the total-effect test is the competitive mediation: when the direct and indirect paths bear opposite signs, their
effects offset each other, and hence the total effect can be non-significant even when the mediated path is strong. The phenomenon is well-known, as shown in the long list of publications on the topic (Conger (1974); Velicer (1978); McFatter (1979); Davis (1985); Hamilton (1987); Cohen (1988); Tzelgov and Henik (1991); Kenny, Kashy and Bolger (1998); MacKinnon, Krull and Lockwood (2000); Shrout and Bolger (2002); Lord and Novick (2008); Hayes (2009); Zhao et al. (2010); Rucker et al. (2011)). There are also simulated data (McFatter (1979); Collins, Graham and Flaherty (1998); Hayes (2009)) and real-data examples (Zhao (1997); Zhao et al. (2010); Li et al. (2013)) in support of the argument. A second argument, offered by Shrout and Bolger (2002), is that when the independent variable \(X \) occurs temporally long before the dependent variable \(Y \), or when the expected effect size is small, it would be too difficult for the mediated effect to survive the total-effect test. The authors’ hypothetical example was how out-of-home placement of children affects their substance abuse during adulthood. A third argument, by Zhao, Chen and Tong (2011), is that in an indirect-only mediation where the mediated \(a \times b \) path is significant but the direct \(d \) path is not, the large statistical error of \(d \) path relative to its effect size may inflate the statistical error of the total effect \(c \) relative to its effect size. A total-effect test in this situation may produce a misleading
non-significant c when mediation $a \times b$ is in effect strong. There is also a real data example (Zhao et al. (1994)) in support of the argument. A fourth argument, which Zhao et al. (2010) mentioned in passing, is that in a *complementary mediation*, where the direct and indirect paths bear the same sign and both are significant, the total-effect test always passes, making the test superfluous. Encouraged by these arguments, many recent authors (Hayes (2009); MacKinnon and Fairchild (2009); Zhao et al. (2010); Rucker et al. (2011); Zhao, Chen and Tong (2011)) advocated ignoring the test for all types of mediation.

However, even though it has been well agreed to suspend the total-effect test for competitive mediation as well as indirect-only mediation, not all mediation experts agree to drop the total-effect test for complementary mediation. The detailed debate can be found in Shrout and Bolger (2002), Rose et al. (2004), Wen et al. (2004), Mathieu and Taylor (2006), and Wen and Ye (2014). Although both sides have proposed various arguments to defend themselves, no explicit statistical formulation and solid mathematical proof for the original problem are available so far even for the classic mediation model, making the debate last for decades until now.

This article aims to resolve this issue. By reformulating the original problem into a geometric problem about the rejection regions of different
tests involved, we provide an explicit proof that the total effect has to be statistically significant whenever mediated and direct effects bear the same sign and are both significant, as long as the least square estimation (LSE) and the F-test or the Sobel test (Sobel (1982)) are used to estimate and test mediation effects. Considering that the LSE-F and LSE-Sobel frameworks are the classic standard approaches for mediation analysis, our finding provides support to the growing consensus that the total-effect test should be abolished for establishing mediation.

2. Frameworks to Establish Complementary Mediation

In the classic mediation model, treating the direct effect d and the mediation effect $a \times b$ in the classic mediation model as unknown constants, we obtain the obvious equivalence between “$c = a \times b + d = 0$” and “$a \times b = 0$ and $d = 0$” as long as $a \times b$ and d bear the same sign. Furthermore, it is intuitively natural to believe that the same conclusion would hold for statistical inference, i.e., if the two paths d and $a \times b$ bear the same sign and are both significant, their combination $c = a \times b + d$ must point in the same direction and also be statistically significant. If the intuition is indeed correct, we would be able to assure the significance of total effect c by testing the significance of a, b, and d, and the total effect test would be redundant.
To the best of our knowledge, however, there is no explicit theoretical proof for this intuition in the literature so far due to the complexity of statistical inference. The lack of theoretical guarantee of this intuition has led to many confusions, disagreements, and a long debate on the role of total effect test for establishing complementary mediation.

In the literature, there are different ways to estimate and test mediation effects in the mediation model. Baron and Kenny (1986) suggested to estimate \((a, b, d, c)\) by their LSEs \((\hat{a}, \hat{b}, \hat{d}, \hat{c})\) and claim the indirect path of mediation effect by the Sobel test, which tests

\[
H_0 : a \times b = 0 \quad \text{vs} \quad H_1 : a \times b \neq 0
\]

with statistic

\[
S = \frac{\hat{a}\hat{b}}{(\hat{a}^2 \text{Var}(\hat{b}) + \hat{b}^2 \text{Var}(\hat{a}))^{1/2}},
\]

whose asymptotic distribution under the null is the standard normal. The LSE-Sobel framework enjoys the advantage of straightforward intuition as it infers the indirect mediation effect \(a \times b\) directly with a single test. Its limitation, however, lies in the fact that the Sobel test is not an exact test as the distribution of the test statistic \(S\) depends on the values of \(a\) and \(b\).

Alternatively, Judd and Kenny (1981) suggested to establish mediation by estimating and testing \(a, b, d, c\) separately, based on the observation
that the original test in (2.1) can be recast as an equivalent problem below:

\[H_0 : a = 0 \text{ or } b = 0 \quad \text{vs} \quad H_1 : a \neq 0 \text{ and } b \neq 0, \quad (2.2) \]

which can be resolved by checking whether \(a \neq 0 \) and \(b \neq 0 \) separately via the tests below:

\[H_0 : a = 0 \quad \text{vs} \quad H_1 : a \neq 0, \quad (2.3) \]
\[H_0 : b = 0 \quad \text{vs} \quad H_1 : b \neq 0. \quad (2.4) \]

If the null hypothesis is rejected for both (2.3) and (2.4), it is apparent that the null hypothesis for test (2.2) should be rejected too. A natural way to implement this idea is the LSE-F framework, in which \(a, b, d, c \) are estimated by LSE and tested by the \(F \)-test. Because the \(F \)-tests for \(a, b, d, c \) are all exact, the LSE-F framework enjoys the theoretical convenience that the LSE-Sobel framework does not have.

Moreover, to deal with cases where the noise terms \(\varepsilon_M \) and \(\varepsilon_Y \) follow a heavy-tail distribution, e.g., Laplace distribution, [Pollard (1991)] proposed the LAD-Z framework, which follows the similar strategy as the LSE-F framework. More precisely, in LAD-Z one estimates the regression coefficients by the more robust least absolute deviation estimation (LAD) and tests their significance by the \(Z \)-test: comparing the \(Z \)-statistic
z_j = |\tilde{\beta}_j|/sd(\tilde{\beta}_j) with the standard normal distribution to establish the statistical significance, where \tilde{\beta}_j is the LAD estimate of regression coefficient \beta and sd(\tilde{\beta}_j) is the estimated standard deviation of \tilde{\beta}_j. MacKinnon, Warsi and Dwyer (1995) provided a comprehensive review of the different frameworks and compared their performance via simulations.

3. Main Results

3.1 The major theorem

In this study, we focus on the LSE-F framework. Let \hat{a}, (\hat{b}, \hat{d}), and \hat{c} be the LSEs of the coefficients a, (b, d), and c in regression models (1.1), (1.2), and (1.3), respectively. We use \mathcal{R}_a(\alpha), \mathcal{R}_b(\alpha), \mathcal{R}_d(\alpha) and \mathcal{R}_c(\alpha) to denote the rejection regions of the corresponding F-tests under the critical level \alpha \in (0, 1), and \ p_a, \ p_b, \ p_d and \ p_c are the corresponding p-values. We note that the debate of “whether the total-effect test is superfluous for establishing complementary mediation” can be resolved by verifying whether \mathcal{R}_a(\alpha) \cap \mathcal{R}_b(\alpha) \cap \mathcal{R}_d(\alpha) \subseteq \mathcal{R}_c(\alpha) for all \alpha \in (0, 1). Apparently, if \mathcal{R}_a(\alpha) \cap \mathcal{R}_b(\alpha) \cap \mathcal{R}_d(\alpha) is always a subset of \mathcal{R}_c(\alpha), we would have \ p_c \leq \max\{p_a, p_b, p_d\}, which in turn means that the total effect c must be significant if a, b and d are all significant. In this paper, we show via the following theorem that the rejection regions indeed enjoy such as nice
Theorem 1. Suppose there are n data points in the classic mediation model. Let $\mathbf{1} = (1, \ldots, 1)^T$ be the n-dimensional column vector whose elements all equal to 1, and let $\mathbf{X}, \mathbf{M}, \mathbf{Y}$ be the column data vectors for variables X, M and Y respectively. Let $\mathbf{D} = (\mathbf{1}, \mathbf{X}, \mathbf{M}, \mathbf{Y})$ denote the data matrix of the regression. If $\text{rank}(\mathbf{D}) = 4$, then the condition $\hat{a} \times \hat{b} \times \hat{d} > 0$ implies $\text{sign}(\hat{c}) = \text{sign}(\hat{d})$ and

$$\mathcal{R}_a(\alpha) \cap \mathcal{R}_b(\alpha) \cap \mathcal{R}_d(\alpha) \subseteq \mathcal{R}_c(\alpha) \text{ for all } \alpha \in (0, 1).$$

To verify Theorem 1, we need to derive the concrete form of the involved LSEs and rejection regions. For a multivariate linear regression problem

$$Y = \beta_0 X_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

with n data points $\{(X_{i0}, X_{i1}, \ldots, X_{ip}, Y_i)\}_{i=1}^n$, we let $\hat{\beta}$ be the LSE of $\beta = (\beta_0, \ldots, \beta_p)$, and let $\mathcal{R}_j(\alpha)$ be the level-α rejection region of the F-test for testing hypotheses

$$H_0 : \beta_j = 0 \text{ vs } H_1 : \beta_j \neq 0. \quad (3.6)$$

Let $\mathbf{Y} = (Y_1, \ldots, Y_n)^T$ and $\mathbf{X}_j = (X_{1j}, \ldots, X_{nj})^T$ be the response vector and the jth predictor vector, respectively. We write the design matrix as $\mathbf{X} = (\mathbf{X}_0, \mathbf{X}_1, \ldots, \mathbf{X}_p)$, and denote

$$\mathbf{X}[-j] = (\mathbf{X}_0, \ldots, \mathbf{X}_{j-1}, \mathbf{X}_{j+1}, \ldots, \mathbf{X}_p) \text{ for all } j \in \{0, \ldots, p\}.$$
Table 1: Tests to establish mediation: models, hypotheses and rejection regions of the F-tests for each parameter.

<table>
<thead>
<tr>
<th>Test</th>
<th>Model</th>
<th>Hypotheses</th>
<th>Rejection region of F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_a</td>
<td>$M = i_M + aX + \varepsilon_M$</td>
<td>$H_0: a = 0, H_1: a \neq 0$</td>
<td>$R_a(\alpha) = \begin{cases} \frac{</td>
</tr>
<tr>
<td>T_b</td>
<td>$Y = bY_0 + bM + dX + \varepsilon_Y$</td>
<td>$H_0: b = 0, H_1: b \neq 0$</td>
<td>$R_b(\alpha) = \begin{cases} \frac{</td>
</tr>
<tr>
<td>T_c</td>
<td>$Y = cY_0 + cX + \varepsilon_Y$</td>
<td>$H_0: c = 0, H_1: c \neq 0$</td>
<td>$R_c(\alpha) = \begin{cases} \frac{</td>
</tr>
</tbody>
</table>

The classic theory for linear regression (Neter, Wasserman and Kutner (1989)) tells us that

$$\hat{\beta} = (X'X)^{-1}X'Y,$$

$$R_j(\alpha) = \begin{cases} (X, Y) : \frac{||Y_X - Y_{X[-j]}||}{Y - Y_X}/(n - p - 1) > \lambda_{1,n-p-1}(\alpha) \end{cases},$$

where Y_X stands for the projection of vector Y onto the linear space, span(X), and $\lambda_{t,s}(\alpha)$ represents the αth-quantile of F-distribution with the degrees of freedom (t, s). Applying (3.8) to the mediation model (1.1)-(1.3), we obtain the rejection regions $R_a(\alpha), R_b(\alpha), R_d(\alpha),$ and $R_c(\alpha)$ for the corresponding F-tests, as summarized in Table 1.
3.2 Simplifying the problem via orthogonal data transformation

Although (3.7)-(3.8) and Table 1 provide the mathematical formulation of the LSEs and rejection regions of interest, it is inconvenient to verify Theorem 1 directly based on them. To further simplify the problem, we notice that the statistical inference of β in terms of LSE and F-tests does not depend on the choice of the coordinate system in the data space of the regression model as stated by the lemma below:

Lemma 1. Let $D = (X_0, X_1, \ldots, X_p, Y)$ be the data matrix of regression model (3.5). For any $n \times n$ real orthogonal matrix Γ satisfying $\Gamma'\Gamma = I_n$ and global scale parameter $\gamma > 0$, define $\tilde{D} = (\tilde{X}_0, \tilde{X}_1, \ldots, \tilde{X}_p, \tilde{Y}) = \gamma\Gamma D$ be the transformed data matrix and

$$\tilde{Y} = \beta_0\tilde{X}_0 + \beta_1\tilde{X}_1 + \ldots + \beta_p\tilde{X}_p + \varepsilon$$

(3.9)

be the transformed regression problem. Let $\tilde{\beta}$ be the LSE of β and $\tilde{R}_j(\alpha)$ be the corresponding rejection region of F-test for hypotheses (3.6) under the transformed problem (3.9). We have

$$\tilde{\beta} = \hat{\beta} \text{ and } \tilde{R}_j(\alpha) = R_j(\alpha) \text{ for all } j \in \{0, \ldots, p\} \text{ and } \alpha \in (0, 1).$$

Lemma 1 means that we can choose a convenient coordinate system to work with in a regression model without changing the results of sta-
tistical inference for regression coefficient. Considering that data matrix $D = (1, X, M, Y)$ in the classic mediation model and $\text{rank}(D) = 4$, the four column vectors in D span a 4-dimensional subspace in \mathbb{R}^n. With the freedom to reset the coordinate system of \mathbb{R}^n and the scale of the four data vectors, we can certainly find an orthogonal coordinate system of the data space under which the vector representation of the four original data vectors becomes $\tilde{1} = (1, 0, \ldots, 0)^T$, $\tilde{X} = (x_1, x_2, 0, \ldots, 0)$, $\tilde{M} = (m_1, m_2, m_3, 0, \ldots, 0)$, $\tilde{Y} = (y_1, y_2, y_3, y_4, 0, \ldots, 0)$ with $x_2 > 0$, $m_3 > 0$ and $y_4 > 0$. Let $\tilde{D} = (\tilde{1}, \tilde{X}, \tilde{M}, \tilde{Y})$ be the data matrix under the new coordinate system. Clearly, \tilde{D} is an upper triangular matrix.

Because different coordinate systems can be mapped to each other via orthogonal transformations, we can also interpret \tilde{D} as a transformation of the original data matrix D, i.e., there exists an orthogonal matrix Q such that $\tilde{D} = \gamma Q' D$, where the factor $\gamma = 1/\sqrt{n}$ rescales the vector 1 to have unit length. In theory, the configuration of orthogonal matrix Q is typically not unique, as there are often more than one coordinate systems that satisfy our conditions. In practice, however, we can always find a specific configuration of Q via the standard Gram-Schmidt process. We detail the process in the Supplementary Materials. Since Lemma 1 ensures that D
and \(\tilde{D} \) lead to the exactly same LSEs and rejection regions for \((a, b, d, c)\), and projection calculation becomes much easier for the transformed data matrix \(\tilde{D} \), we can derive an explicit form of LSEs and geometric shapes of rejection regions of interest in Lemma 2.

Lemma 2. Based on the transformed data matrix \(\tilde{D} \), we have:

\[
\hat{a} = \hat{a} = m_2^2 / x_2^2, \quad \hat{b} = \hat{b} = y_3 / m_3, \quad \hat{c} = \hat{c} = y_2 / x_2, \quad \hat{d} = \hat{d} = (m_3 y_2 - m_2 y_3) / x_2 m_3;
\]

\[
\mathcal{R}_a(\alpha) = \mathcal{R}_a(\alpha) = \{ r > r_{n,\alpha} \};
\]

\[
\mathcal{R}_b(\alpha) = \mathcal{R}_b(\alpha) = \{ p > p_{n,\alpha} \};
\]

\[
\mathcal{R}_c(\alpha) = \mathcal{R}_c(\alpha) = \{ q > r_{n,\alpha}(p^2 + 1)^{1/2} \};
\]

\[
\mathcal{R}_d(\alpha) = \mathcal{R}_d(\alpha) = \begin{cases}
\{ |q - rp| > p_{n,\alpha}(r^2 + 1)^{1/2} \}, & \text{if } \hat{a}\hat{b}\hat{c} \geq 0, \\
\{ |q + rp| > p_{n,\alpha}(r^2 + 1)^{1/2} \}, & \text{if } \hat{a}\hat{b}\hat{c} < 0;
\end{cases}
\]

where \(r = |m_2| / m_3 \), \(p = |y_3| / y_4 \) and \(q = |y_2| / y_4 \); \(r_{n,\alpha} = [\lambda_{1,n-2}(\alpha) / (n - 2)]^{1/2} \) and \(p_{n,\alpha} = [\lambda_{1,n-3}(\alpha) / (n - 3)]^{1/2} \) are constants for fixed sample size \(n \) and significant level \(\alpha \).

Lemma 2 tells us that each of the four rejection regions of interest corresponds to a subspace in a 3-dimensional space indexed by \((p, q, r)\), which degenerates to a region in \(p-q \) plane \(\mathcal{P}_r \) for each specific value of \(r \). Let
\(R_j(\alpha|r) \) be the intersection of \(R_j(\alpha) \) and \(P_r \) for all \(j \in \{a, b, c, d\} \). Apparently, \(R_a(\alpha|r) = P_r \cap I(r > r_{n,\alpha}) \) corresponds to either an empty set or the whole \(p-q \) plane \(P_r \) depending on the value of \(r \). Region \(R_b(\alpha|r) \) is the right half of \(P_r \) beyond the vertical line \(p = p_{n,\alpha} \). Region \(R_c(\alpha|r) \) corresponds the space above the higher branch of the hyperbola with asymptotes \(q = \pm r_{n,\alpha}p \) and vertices \((0, \pm r_{n,\alpha})\). The structure of region \(R_d(\alpha|r) = R_d^+(\alpha|r) \cup R_d^-(\alpha|r) \), however, is a bit complicated. When \(\hat{a}\hat{b}\hat{c} \geq 0 \), \(R_d(\alpha|r) \) contains two disconnected sub-regions \(R_d^+(\alpha|r) \) and \(R_d^-(\alpha|r) \), where \(R_d^+(\alpha|r) = \{ q > p_{n,\alpha}\sqrt{r^2 + 1} + rp \} \) being the region above the straight line with intercept \(t_{r,\alpha} = p_{n,\alpha}\sqrt{r^2 + 1} \) and slope \(k_r = r \), and \(R_d^-(\alpha|r) = \{ q < -p_{n,\alpha}\sqrt{r^2 + 1} + rp \} \) being the region below the straight line with intercept \(-t_{r,\alpha} \) and slope \(k_r = r \). When \(\hat{a}\hat{b}\hat{c} < 0 \), however, the two components of \(R_d(\alpha|r) \) change accordingly into the new forms below: \(R_d^+(\alpha|r) = \{ q > p_{n,\alpha}\sqrt{r^2 + 1} - rp \} \) and \(R_d^-(\alpha|r) = \{ q < -p_{n,\alpha}\sqrt{r^2 + 1} - rp \} \), with \(R_d^-\alpha|r) \) vanishes due to the constraints that \(p > 0 \) and \(q > 0 \). Figure 2 provides a graphical demonstration for the geometry of \(R_b(\alpha|r) \), \(R_c(\alpha|r) \) and the effective components of \(R_d(\alpha|r) \) under different conditions, respectively.
Figure 2: A graphical illustration of $R_b(\alpha|r)$, $R_c(\alpha|r)$ and $R_d(\alpha|r)$ in the $p-q$ for a fixed r: (A) $R_b(\alpha|r)$, (B) $R_c(\alpha|r)$, (C) $R_d(\alpha|r)$ when $\hat{a}\hat{b}\hat{c} \geq 0$, (D) $R_d(\alpha|r)$ when $\hat{a}\hat{b}\hat{c} < 0$.

3.3 Geometric analysis for complementary mediation

To claim complementary mediation, we typically require $\hat{a}\hat{b}\hat{d} > 0$ as a necessary condition.
Corollary 1. If \(\hat{a} \hat{b} \hat{d} > 0 \), we have: (1) \(\text{sign}(\hat{c}) = \text{sign}(\hat{d}) \), and (2) \(\mathcal{R}_d^-(\alpha) = \emptyset \), and thus \(\mathcal{R}_d(\alpha) = \mathcal{R}_d^+(\alpha) = \{ q > rp + p_{n,\alpha}(r^2 + 1)^{1/2} \} \).

Based on the above reasoning, for complementary mediation, the geometry of \(\mathcal{R}_a(\alpha|r) \), \(\mathcal{R}_b(\alpha|r) \), \(\mathcal{R}_d(\alpha|r) \) and \(\mathcal{R}_c(\alpha|r) \) can be demonstrated as in Figure 3. Obviously, Theorem 1 holds if and only if

\[
\mathcal{R}_a(\alpha|r) \cap \mathcal{R}_b(\alpha|r) \cap \mathcal{R}_d(\alpha|r) \subseteq \mathcal{R}_c(\alpha|r) \quad \text{for all } \alpha \in (0, 1) \text{ and } r \in (0, +\infty).
\]

(3.10)

As (3.10) trivially holds for all \(r \leq r_{n,\alpha} \), we only need to consider the scenario where \(r > r_{n,\alpha} \). In this case, the geometry in Figure 3 shows that a sufficient and necessary condition of (3.10) is: the boundary of \(\mathcal{R}_b(\alpha|r) \cap \mathcal{R}_d(\alpha|r) \) stays away from the boundary of \(\mathcal{R}_c(\alpha|r) \) for all \(\alpha \in (0, 1) \), which is ensured by the condition: for all \(n > 3 \) and \(\alpha \in (0, 1) \),

\[
\pi_{n,\alpha} = t_{r_{n,\alpha}} - r_{n,\alpha} = p_{n,\alpha}(r_{n,\alpha}^2 + 1)^{1/2} - r_{n,\alpha} \geq 0. \quad (3.11)
\]

The Lemma below guarantees that inequality (3.11) holds. Therefore, we complete the proof of Theorem 1.

Lemma 3. For all \(n > 3 \) and \(\alpha \in (0, 1) \), \(p_{n,\alpha} \geq r_{n,\alpha} \).
Figure 3: Geometry of $\mathcal{R}_b(\alpha|r) \cap \mathcal{R}_d(\alpha|r)$ and $\mathcal{R}_c(\alpha|r)$ in p-q plane for complementary mediation.

3.4 Impact to the analysis of complementary mediation

The above results suggest that total-effect test is superfluous in establishing complementary mediation under the LSE-F framework, and we only need to follow the procedure below in practice:

1. obtain $\hat{a}, \hat{b}, \hat{d}$ via LSE;

2. check whether $\hat{a} \hat{b} \hat{d} > 0$; stop if the condition fails;

3. test whether \hat{a}, \hat{b} and \hat{d} are statistically significant via the standard F-test for regression coefficients; stop if some of the tests fail;
4. claim there is a complementary mediation if we finally reach this end.

3.5 Extension to mediation of other types

A similar geometric analysis can also be adopted to study mediation of other types. It has been widely accepted that the total-effect test should not be considered for establishing competitive mediation, because the mediation effect and the direct effect may cancel out due to the competition, leading to an insignificant total effect. To support the above argument via geometric analysis, we only need to show that $\mathcal{R}_b(\alpha|r) \cap \mathcal{R}_d(\alpha|r)$ and $\mathcal{R}_c(\alpha|r)$ do not bother each other in general.

Figure 4: Geometry of $\mathcal{R}_b(\alpha|r) \cap \mathcal{R}_d(\alpha|r)$ and $\mathcal{R}_c(\alpha|r)$ in $p-q$ plane for competitive mediation: (A) when $\hat{a}\hat{b}\hat{c} \geq 0$, (B) when $\hat{a}\hat{b}\hat{c} < 0$.

Figure 4 demonstrates the geometry of $\mathcal{R}_b(\alpha|r) \cap \mathcal{R}_d(\alpha|r)$ and $\mathcal{R}_c(\alpha|r)$
when $\hat{a}\hat{b}\hat{d} < 0$. Because the value of $\hat{a}\hat{b}\hat{c}$ can be positive or negative in this case (condition $\hat{a}\hat{b}\hat{d} < 0$ does not necessarily lead to a positive or negative $\hat{a}\hat{b}\hat{c}$ as in the complementary mediation), the geometry of $R_d(\alpha)$ has two alternative forms depending on the sign of $\hat{a}\hat{b}\hat{c}$ based on Lemma 2 and needs to be discussed separately. Figure 4 (A) and (B) correspond to each of the two scenarios, respectively. From these figures, we can see that $R_a(\alpha) \cap R_b(\alpha) \cap R_d(\alpha)$ and $R_c(\alpha)$ can either completely separate from each other (when $\hat{a}\hat{b}\hat{c} > 0$) or share a common sub-region (when $\hat{a}\hat{b}\hat{c} < 0$), confirming that the total effect test is indeed irrelevant to establishing a competitive mediation.

Figure 5: Geometry of $R_b(\alpha|r) \cap R_d^c(\alpha|r)$ and $R_c(\alpha|r)$ in p-q plane for indirect-only mediation: (A) when $\hat{a}\hat{b}\hat{c} \geq 0$, (B) when $\hat{a}\hat{b}\hat{c} < 0$.
Similarly, we expect an unconstrained relationship between $R_a(\alpha) \cap R_b(\alpha) \cap R_c(\alpha)$ and $R_d(\alpha)$ for indirect-only mediation, as it’s also widely adopted that the total-effect test may not be significant for this case. Figure 5 demonstrates the geometry of $R_b(\alpha|r) \cap R_c(\alpha|r)$ and $R_c(\alpha|r)$ with no further constraints on LSEs. The figures show that there exist cases where $R_b(\alpha|r) \cap R_c(\alpha|r)$ and $R_c(\alpha|r)$ intersect but do not contain each other, as in Figure 5(A), or completely separate from each other, as in Figure 5(B), confirming an unconstrained relationship between $R_a(\alpha) \cap R_b(\alpha) \cap R_c(\alpha)$ and $R_d(\alpha)$ in general. These results suggest that the geometric analysis proposed in this paper could serve as a general tool for studying mediation of various types.

4. Simulation Studies

4.1 Numerical validation of Theorem 1

The theoretical result above the total-effect test under the LSE-F framework, as stated in Theorem 1, can be validated numerically by simulation. For this purpose, we generated simulated data from the mediation model
(1.1) and (1.2) as follows:

\[n \sim \text{Unif}(\{4, \cdots, 100\}), \quad (i_M, i_Y, a, b, d) \sim \text{Unif}[-1, 1]^5, \]

\[X \sim N(0, 1), \quad \sigma^2_M \text{ and } \sigma^2_Y \sim \text{Inv-Gamma}(1, 1). \]

Totally, 1000 independent datasets of different sample sizes were simulated for numerical validation.

For each simulated dataset, we calculated the LSEs (\(\hat{a}, \hat{b}, \hat{d}, \hat{c} \)) and \(p \)-values (\(p_a, p_b, p_d, p_c \)) accordingly under the LSE-F framework. If our theory holds, we would expect to see that \(p_c \leq \max\{p_a, p_b, p_d\} \) and \(\hat{d} \hat{c} > 0 \) for all runs in which \(\hat{a} \hat{b} \hat{d} > 0 \). Figure 6 checks the above expectations in a graphical manner. Figure 6 (A) checks the \(p \)-value condition by demonstrating each simulated dataset with one point in a 2-dimensional space with the \(X \)-axis representing \(\max\{p_a, p_b, p_d\} \), the \(Y \)-axis standing for \(p_c \), and the shape highlighting the type of points: black circles for datasets satisfying \(\hat{a} \hat{b} \hat{d} > 0 \), and grey crossings for all the other datasets; Figure 6 (B) checks the estimator sign condition in a similar way with the \(X \)-axis and \(Y \)-axis representing \(\hat{d} \) and \(\hat{c} \), respectively. We can see from these figures that although the grey crossing points spread all over the figures, all black circle points are located under the diagonal line in Figure 6 (A), and within the up-right and down-left quadrants in Figure 6 (B). These results are consistent to
our expectation, and thus validate our theory numerically.

![Figure 6: Numerical validation of Theorem 1](image)

Figure 6: Numerical validation of Theorem 1. Black circles represent datasets with $\hat{a}\hat{b}\hat{d} > 0$, and grey crossings represent datasets with $\hat{a}\hat{b}\hat{d} \leq 0$.

4.2 Exploratory analysis for other frameworks

To explore whether a similar result holds for other frameworks for establishing complementary mediation, we also implemented a similar numerical analysis for the LSE-Sobel framework and LAD-Z framework with the same group of simulated datasets. For the LSE-Sobel framework, we calculated the LSEs ($\hat{a}, \hat{b}, \hat{d}, \hat{c}$) for each simulated dataset, and p-values of the corresponding tests, including p_{ab}, the p-value of the Sobel test for $a \times b$, p_d, the p-value of the F-test for d, and p_c, the p-value of the F-test for c. If a similar result holds for the LSE-Sobel framework, we would expect to see
that \(p_c \leq \max\{p_{ab}, p_d\} \) and \(\hat{d}\hat{c} > 0 \) for all runs in which \(\hat{a}\hat{b}\hat{d} > 0 \).

\[\max(p_{ab}, p_d) \]

\[p_c \]

\[\hat{d}\hat{c} \]

\[\hat{a}\hat{b}\hat{d} \]

Figure 7: Numerical exploration for the LSE-Sobel framework: black circles represent datasets with \(\hat{a}\hat{b}\hat{d} > 0 \), and grey crossings represent datasets with \(\hat{a}\hat{b}\hat{d} \leq 0 \).

Very similar to Figure 6, Figure 7 provides a graphical demonstration of the results under the LSE-Sobel framework. Clearly, all black circle points are located under the diagonal line in Figure 7(A), suggesting that the LSE-Sobel framework may share a similar property as the LSE-F framework, i.e., \(p_c \leq \max\{p_{ab}, p_d\} \). Furthermore, considering that Figure 7(B) is exactly the same as Figure 6(B), as the LSE-Sobel framework and the LSE-F framework are identical in parameter estimation, we tend to believe that the total-effect test is superfluous under the LSE-Sobel framework as
well. In fact, the theoretical result below provides us confidence about this conjecture when sample size \(n \) is large enough.

Theorem 2. Let \(p_{ab} \) be the \(p \)-value of the Sobel test, and let \(p_a \) and \(p_b \) be \(p \)-values of \(F \)-tests for \(a \) and \(b \), respectively. Then, for all \(\varepsilon > 0 \), there exists \(N > 0 \) such that as long as the sample size \(n > N \), we have \(p_{ab} \geq \max\{p_a, p_b\} - \varepsilon \).

Theorem 2 leads to the following corollary immediately.

Corollary 2. If \(\hat{a} \hat{b} \hat{d} > 0 \), then

\[
\text{sign}(\hat{c}) = \text{sign}(\hat{d}) \quad \text{and} \quad \lim_{n \to \infty} P(p_c \leq \max\{p_{ab}, p_d\}) = 1.
\]

For the LAD-Z framework, however, the similar property does not hold anymore. Let \((\hat{a}, \hat{b}, \hat{d}, \hat{c})\) be the LADs of model parameters \((a, b, d, c)\), and let \((p^*_a, p^*_b, p^*_d, p^*_c)\) be the \(p \)-values of the corresponding \(Z \)-tests. Figure 8 shows the scatter plots of \((\max\{p^*_a, p^*_b, p^*_d\}, p^*_c) \) and \((\hat{d}, \hat{c})\) based on the 1,000 simulation datasets in a similar fashion as Figure 6 and Figure 7. We also replaced the Gaussian errors in (1.1, 1.2) by Laplace errors and the figures have the same pattern. Unfortunately, we find that some black circles (less than 10%), which represent the datasets with \(\hat{a} \hat{b} \hat{d} > 0 \), spread over the diagonal line this time, suggesting that there is no easy answer to the role of total-effect test under the LAD-Z framework.
Figure 8: Numerical exploration for the LAD-\(Z\) framework: black circles represent datasets with \(\hat{a}\hat{b}\hat{d} > 0\), and grey crossings represent datasets with \(\hat{a}\hat{b}\hat{d} \leq 0\).

5. Real Data Applications

To illustrate our main thesis in actual context of real research, we reanalyzed responses to a 1987 opinion survey, which asked 870 randomly selected Beijing residents about their attitudes toward the economic reform under debate (Zhao et al. (1994)). The dataset is of historical significance since the survey is one of the first in China mainland based on probability sampling, and it provides a rare view of the public opinion at the very beginning of the reform, which in the following decades transformed one of the poorest economies into the second largest in the world (Zhao et al.)
Hereinafter, we refer to this dataset as the *Opinion-1987 Data*.

Our reanalysis focuses on how the media affected Beijingers’ understanding of the reasons for the reform, and how the understanding in turn affected Beijingers’ support for the reform, i.e., Use-Media→ Understand-Reason→ Support-Reform. The data and the variables were described in detail by Zhao et al. (1994). Below we highlight some information for this reanalysis.

5.1 Variables in the data

Dependent variable: support for reform (Support-Reform). This is a weighted average of the responses to three questions measuring respondents’ attitude toward the government’s economic policy, originally on 5-point Likert scales. For this reanalysis, the composite variable was linearly transformed to a 0-1 scale where 1 represents the strongest support and 0 represents the strongest opposition (Zhao et al. (1994); Zhao and Zhang (2014)).

Mediating variable: understanding reasons (Understand-Reason). This is a weighted average of the responses to seven questions measuring respondents’ acceptance of the reasons in support of the reform, originally
also on 5-point Likert scales. For this reanalysis the composite variable was also linearly transformed to 0-1 where 1 represents the strongest acceptance and 0 represents the strongest rejection (Zhao et al. (1994); Zhao and Zhang (2014)).

Independent variables: media exposure (Read-Paper, Listen-to-Radio, Watch-TV and Use-Media). Three variables measured how often the respondents read newspaper, listened to radio or watched television. A fourth variable, Use-Media, was created by taking the average of the three. For this reanalysis, each of the four was transformed to a 0-1 scale where 1 represents exposure every day, and 0 represents no exposure at all.

Univariate descriptions of all variables are in Table 2. The original Opinion-1987 Data also contains seven control variables, including Age, Education and so on. Here, we ignore these control variables to simplify the analysis.

5.2 Mediation analysis under various models

By alternating the four independent variables while retaining the same dependent and mediating variables, we constructed four models of potential mediation. Table 3 summarizes the four models and results of corresponding mediation analysis. From the table, we can see that complementary
Table 2: Descriptive statistics of variables in the Opinion-1987 Data: the sample size N, the original scale as data were collected and the 0-1 percentage scale as the data were linearly transformed into the interval $[0, 1]$.

<table>
<thead>
<tr>
<th></th>
<th>Original Scale</th>
<th></th>
<th>0-1 Percentage Scale</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Min</td>
<td>Max</td>
<td>Mean</td>
</tr>
<tr>
<td>Y Support Reform</td>
<td>847</td>
<td>1</td>
<td>5</td>
<td>4.28</td>
</tr>
<tr>
<td>M Understand Reason</td>
<td>846</td>
<td>1</td>
<td>5</td>
<td>3.84</td>
</tr>
<tr>
<td>Read Paper (days/10 days)</td>
<td>838</td>
<td>0</td>
<td>10</td>
<td>5.43</td>
</tr>
<tr>
<td>Listen to Radio (days/10 days)</td>
<td>842</td>
<td>0</td>
<td>10</td>
<td>5.45</td>
</tr>
<tr>
<td>Watch TV (days/10 days)</td>
<td>844</td>
<td>0</td>
<td>10</td>
<td>6.25</td>
</tr>
<tr>
<td>Use Media (days/10 days)</td>
<td>844</td>
<td>0</td>
<td>10</td>
<td>5.71</td>
</tr>
</tbody>
</table>
Table 3: Mediation analysis results of the Opinion-1987 Data. Columns 2-6: the independent variable name of each model; LSEs of the parameters; whether the condition $\hat{a}\hat{b}\hat{d} > 0$ holds; p-values of testing each parameter and mediation types of each model. The mediation type is determined by fixing significant level $\alpha = 0.05$.

<table>
<thead>
<tr>
<th>Model</th>
<th>X</th>
<th>Estimates</th>
<th>$I(\hat{a}\hat{b}\hat{d} > 0)$</th>
<th>p-values</th>
<th>Mediation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{M}_1)</td>
<td>Read_Paper</td>
<td>0.229 0.239 0.048 0.102</td>
<td>Yes</td>
<td><2e-16 1.53e-13 1.46e-2 6.54e-8</td>
<td>Complementary</td>
</tr>
<tr>
<td>(\mathcal{M}_2)</td>
<td>Listen_to_Radio</td>
<td>0.155 0.242 0.059 0.096</td>
<td>Yes</td>
<td>4.65e-14 3.40e-15 1.23e-3 1.99e-7</td>
<td>Complementary</td>
</tr>
<tr>
<td>(\mathcal{M}_3)</td>
<td>Watch_TV</td>
<td>0.025 0.265 0.034 0.041</td>
<td>Yes</td>
<td>0.271 <2e-16 7.44e-2 4.19e-2</td>
<td>Non-mediation</td>
</tr>
<tr>
<td>(\mathcal{M}_4)</td>
<td>Use_Media</td>
<td>0.242 0.238 0.080 0.137</td>
<td>Yes</td>
<td><2e-16 1.88e-14 1.37e-3 3.94e-8</td>
<td>Complementary</td>
</tr>
</tbody>
</table>

Mediation shows up in three of the four models, i.e., models \(\mathcal{M}_1, \mathcal{M}_2\) and \(\mathcal{M}_4\), while no mediation effect is found in model \(\mathcal{M}_3\), probably due to the lack of popularity of TV in China at that time (a TV set was still too expensive for a typical Chinese family to afford in 1980s). It is easy to check that Theorem [1] holds for all these real datasets, and the total-effect test is indeed superfluous, as predicted by Theorem [1].
6. Conclusion and Discussion

This article provides an explicit proof that the total effect always bears the same sign as the direct effect and has to be statistically significant when the mediated effect and the direct effect point to the same direction and are both significant, as long as LSE and F-tests are used to establish mediation, therefore is superfluous and unhelpful for establishing mediation of this type in the classic mediation model. We also show by numerical study and theoretical analysis that the similar result also holds for the LSE-Sobel framework when sample size is large enough. Considering that it has been widely accepted that total-effect test can erroneously reject competitive mediation and indirect-only mediation, the other two types of mediation, the finding in this work supports the growing consensus that the total-effect test should be abolished for establishing any type of mediation.

The discussions in this study are limited to the classic mediation model so far, where X and M influence Y and each other linearly. For the more general cases where X and M influence Y in a non-linear way with interactions, it becomes conceptually tricky and technically more challenging to define, estimate, and test for mediation effects. See [Robins and Greenland (1992), Pearl (2001), Frangakis and Rubin (2002), Lindquist (2012)] for dif-
ferent extensions of the classic direct or indirect effect in a general setting, and [Pearl (2012), Daniels et al. (2012)] for estimation methods. More efforts are needed to study the role of total-effect test in the more general settings.

Supplementary Materials

Supplementary materials available online include the details for constructing the transformed data matrix \tilde{D} and a detailed proof for Lemma 2.

Acknowledgements

This research is supported in part by National Natural Science Foundation of China (Grant 11771242, DK PI), Beijing Academy of Artificial Intelligence (Supporting Grant, DK PI), Higher Education Fund of the Government of Macao SAR (ZXS PI), and grants of University of Macau, including FSS One-off Research Assistance Fund, CPG2018-00035-FSS and SRG2018-00143-FSS (ZXS PI).

Appendix

A. Proof of Lemma 1

Apparently,

$$\tilde{\beta} = (\tilde{X}'\tilde{X})^{-1}\tilde{X}'\tilde{Y} = [(\gamma'\Gamma X)'(\gamma'\Gamma X)]^{-1}(\gamma'\Gamma X)'(\gamma'\Gamma Y) = (X'X)^{-1}X'Y = \hat{\beta};$$
and, $\mathcal{R}_j(\alpha) = \tilde{\mathcal{R}}_j(\alpha)$ for all $j \in \{0, \ldots, p\}$ and $\alpha \in (0,1)$ as the F-statistics is invariant under the transformation, i.e.,

$$
\tilde{F}_j = \frac{||\tilde{Y}_j - \tilde{Y}_{j[-j]}||/1}{||\tilde{Y} - \tilde{Y}_j||/(n - p - 1)} = \frac{||Y_j - Y_{j[-j]}||/1}{||Y - Y_j||/(n - p - 1)} = F_j, \; j \in \{0, \ldots, p\}.
$$

B. Proof of Lemma 2

Based on the transformed data matrix $\tilde{\mathcal{D}}$, it is easy to see that

$$
\tilde{M}_1 = (m_1, 0, \ldots, 0), \; \tilde{M}_{1,\tilde{X}} = (m_1, m_2, 0, \ldots, 0),
$$

$$
\tilde{Y}_1 = (y_1, 0, \ldots, 0), \; \tilde{Y}_{1,\tilde{X}} = (y_1, y_2, 0, \ldots, 0), \; \tilde{Y}_{1,\tilde{M},\tilde{X}} = (y_1, y_2, y_3, 0, \ldots, 0),
$$

$$
\tilde{Y}_{1,\tilde{M}} = \left(y_1, \frac{m_2 y_2 + m_3 y_3}{m_2^2 + m_3^2} \times m_2, \frac{m_2 y_2 + m_3 y_3}{m_2^2 + m_3^2} \times m_3, 0, \ldots, 0\right).
$$

Applying (3.7) and (3.8) to the transformed data, we can get the results.

The detailed calculation can be found in Supplementary Material.

C. Proof of Corollary 1

Lemma 2 implies that:

$$
\hat{a} \hat{b} \hat{d} = m_2 y_3 (m_3 y_2 - m_2 y_3) / x_2^2 m_3^2,
$$

$$
\hat{a} \hat{b} \hat{c} = m_2 y_2 y_3 / x_2^2 m_3.
$$
Considering that $x_2 > 0$ and $m_3 > 0$, we have:

$$\hat{a} \hat{b} \hat{d} > 0 \iff m_2 m_3 y_2 y_3 > m_2^2 y_3^2$$

$$\iff \begin{cases} m_2 y_2 y_3 > 0 & \iff \hat{a} \hat{b} \hat{c} > 0; \\ |m_3 y_2| > |m_2 y_3| & \iff q > rp. \end{cases}$$

Note that the condition $\hat{a} \hat{b} \hat{c} > 0$ implies $R_d(\alpha) = \{ |q - rp| > p_{n, \alpha}(r^2 + 1)^{1/2} \}$.

Furthermore, $q > rp$ implies $R_d^-(\alpha) = \emptyset$ and thus $R_d(\alpha) = R_d^+(\alpha) = \{ q > rp + p_{n, \alpha}(r^2 + 1)^{1/2} \}$.

D. Proof of Lemma 3

Let W_n follows F-distribution with the degree of freedom $(1,n)$ and Z_0, Z_1, \ldots, Z_m be a series of independent standard normal random variables, based on the definition of $\lambda_{1,n-2}(\alpha)$ and $\lambda_{1,n-3}(\alpha)$, we have: for all $\lambda > 0$,

$$P \left(\frac{W_{n-2}}{n-2} \leq \frac{\lambda_{1,n-2}(\alpha)}{n-2} \right) = 1 - \alpha = P \left(\frac{W_{n-3}}{n-3} \leq \frac{\lambda_{1,n-3}(\alpha)}{n-3} \right),$$

$$P \left(\frac{W_{n-3}}{n-3} \leq \lambda \right) = P \left(\sum_{i=1}^{n-3} Z_i^2 \leq \lambda \right) \leq P \left(\sum_{i=1}^{n-2} Z_i^2 \leq \lambda \right) = P \left(\frac{W_{n-2}}{n-2} \leq \lambda \right).$$

As a consequence, we have

$$P \left(\frac{W_{n-2}}{n-2} \leq \frac{\lambda_{1,n-2}(\alpha)}{n-2} \right) = P \left(\frac{W_{n-3}}{n-3} \leq \frac{\lambda_{1,n-3}(\alpha)}{n-3} \right) \leq P \left(\frac{W_{n-2}}{n-2} \leq \frac{\lambda_{1,n-3}(\alpha)}{n-3} \right),$$
and thus \(r_{n,\alpha} = \left(\frac{\lambda_{1,n-2}(\alpha)}{n-2} \right)^{1/2} \leq \left(\frac{\lambda_{1,n-3}(\alpha)}{n-3} \right)^{1/2} = p_{n,\alpha} \).

E. Proof of Theorem 2

Let \(T_a = \hat{a}^2 / \text{Var}(\hat{a}) \) and \(T_b = \hat{b}^2 / \text{Var}(\hat{b}) \) be the test statistics of \(F \)-tests for \(a \) and \(b \), respectively. Then the Sobel test statistic is \(S^2 = \frac{1}{1/T_a + 1/T_b} \). Let \(\chi_1^2 \) be a random variable of Chi-squared distribution with degree of freedom 1 and \(F_{1,n} \) be that of \(F \)-distribution with degree of freedom \((1,n) \). By definition, the \(p \)-value of Sobel test is \(p_{ab} = \Pr(\chi_1^2 > S^2) \) and those of \(F \)-tests are \(p_a = \Pr(F_{1,n} > T_a) \) and \(p_b = \Pr(F_{1,n} > T_b) \).

To build the relationship between \(p_{ab} \) and \(\{p_a, p_b\} \), we define \(\tilde{p}_a = \Pr(\chi_1^2 > T_a) \) and \(\tilde{p}_b = \Pr(\chi_1^2 > T_b) \). Since \(S^2 \leq \min\{T_a, T_b\} \), we have:

\[
p_{ab} = \Pr(\chi_1^2 > S^2) \geq \Pr(\chi_1^2 > \min\{T_a, T_b\}) = \max\{\tilde{p}_a, \tilde{p}_b\}.
\]

Furthermore, \(F_{1,n} \) converges to \(\chi_1^2 \) in distribution, implying that as \(n \to \infty \), we have uniformly convergence for all \(T_i \) that

\[
p_i = \Pr(F_{1,n} > T_i) \to \Pr(\chi_1^2 > T_i) = \tilde{p}_i, \text{ for } i = a, b,
\]

Therefore, for all \(\varepsilon > 0 \), there exists \(N > 0 \) such that for all \(n > N \),

\[
p_{ab} \geq \max\{\tilde{p}_a, \tilde{p}_b\} \geq \max\{p_a, p_b\} - \varepsilon.
\]
F. Proof of Corollary 2

Theorem 2 tells us: for all $\varepsilon > 0$, there exists $N > 0$ such that for all $n > N$, we have

$$\max\{p_a, p_b, p_d\} \leq \max\{p_{ab} + \varepsilon, p_d\} \leq \max\{p_{ab}, p_d\} + \varepsilon.$$

Considering that we already have $\text{sign}(\hat{c}) = \text{sign}(\hat{d})$ and $p_c \leq \max\{p_a, p_b, p_d\}$ based on Theorem 1, it’s straightforward to see that the corollary holds.

References

Yau Mathematical Sciences Center & Department of Mathematical Sciences, Tsinghua University, Haidian, Beijing, China.

E-mail: ykjiang15@gmail.com

Department of Communication, Faculty of Social Sciences, University of Macau, Macau, China & School of Media and Journalism, University of North Carolina, Chapel Hill, North Carolina, USA.

E-mail: xszhao@um.edu.mo

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

E-mail: lzhu@hkbu.edu.hk

Department of Statistics, Harvard University, Cambridge, Massachusetts, USA.

E-mail: jliu@stat.harvard.edu

Center for Statistical Science & Department of Industry Engineering, Tsinghua University, Haidian, Beijing, China.

E-mail: kdeng@tsinghua.edu.cn