
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 6, JUNE 2017 1285

Privacy-Preserving Image Denoising From External
Cloud Databases

Yifeng Zheng, Student Member, IEEE, Helei Cui, Student Member, IEEE, Cong Wang, Member, IEEE, and
Jiantao Zhou, Member, IEEE

Abstract—Along with the rapid advancement of digital image
processing technology, image denoising remains a fundamen-
tal task, which aims to recover the original image from its
noisy observation. With the explosive growth of images on
the Internet, one recent trend is to seek high quality similar
patches at cloud image databases and harness rich redundancy
therein for promising denoising performance. Despite the well-
understood bene�ts, such a cloud-based denoising paradigm
would undesirably raise security and privacy issues, especially
for privacy-sensitive image data sets. In this paper, we initiate
the �rst endeavor toward privacy-preserving image denoising
from external cloud databases. Our design enables the cloud
hosting encrypted databases to provide secure query-based image
denoising services. Considering that image denoising intrinsically
demands high quality similar image patches, our design builds
upon recent advancements on secure similarity search, Yao’s
garbled circuits, and image denoising operations, where each is
used at a different phase of the design for the best performance.
We formally analyze the security strengths. Extensive experi-
ments over real-world data sets demonstrate that our design
achieves the denoising quality close to the optimal performance
in plaintext.

Index Terms—Image denoising, external database, cloud
computing, security, privacy.

I. INTRODUCTION

T HE rapid development of digital imaging technologies
and the proliferation of various imaging devices have

accelerated the explosive generation of images today. Along
with the evolvement of many image processing tasks, image
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denoising, which refers to the procedure to recover the original
image from its noisy observation, remains a fundamental
one [1], [2]. Image noise may be caused by different intrinsic
(i.e., sensor) and extrinsic (i.e., environment) conditions that
are often hard to avoid in practical situations [3], [4]. Because
obtaining the high quality original image content can be crucial
in many contexts, image denoising serves as a stepping stone
for a wide range of applications, such as image restoration,
image registration, and image segmentation [3], [5].

Over the extensively studied literature, the class of
patch-based image denoising algorithms is among the most
highly-regarded ones, to date [1], [6]. Its idea is to find
high quality similar patches and exploit them accordingly
to perform patch-wise denoising of a noisy image [1], [7].
Traditionally, patch-based image denoising seeks similar
patches from the noisy image itself, which sometimes has
a quite limited search range subject to the redundancy
within the image. The more popular trend nowadays is to
harness similar patches from generic databases or targeted
databases [1], [6]–[8], which are usually hosted at cloud
for the appealing benefits which include but are limited to:
relief of the burden for local storage management, broad
network access, and avoidance of capital expenditure on
hardware, software, and personnel maintenances [9], [10].
These appealing service benefits bring an emerging trend
toward increasingly deploying various kinds of image services
at cloud (e.g., [11]–[13], to just list a few). The external
databases at cloud often provide much more information due
to the large volumes of images, and thus have larger potential
to yield more promising denoising performance [14], [15].

While the benefits of exploiting external databases are well
understood, such a paradigm of cloud-based denoising would
also raise security and privacy challenges. This is because
many image datasets, e.g., medical images that contain diag-
nostic results, are inherently privacy-sensitive. When storing
them at cloud, which is known to be facing wide attacking
surfaces [16], [17], encryption would become an inevitable
choice. Under such circumstances, how to enable privacy-
preserving image denoising from the mandatorily encrypted
cloud databases becomes of paramount importance. With such
a privacy-preserving design, users should be able to use the
query-based image denoising services at cloud while being
worry-free. Ideally all data leaving from and arriving at the
users’ local device should always be encrypted.

In light of the above observations, in this paper we initiate
the first study for privacy-preserving image denoising from
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external cloud databases. Considering that image denoising
intrinsically demands high quality similar image patches, our
design builds upon recent advancements on secure similarity
search, Yao’s garbled circuits, and image denoising operations.
Specifically, we first consider the challenging question on
searching high quality similar patches efficiently from the
encrypted cloud database of image patches. At the first glance,
such a task can be seemingly handled via the generic technique
that combines searchable symmetric encryption (SSE) and
locality-sensitive hashing (LSH) [18]–[20]. LSH is a well-
studied algorithm which hashes and groups high-dimensional
similar data records with high probability. By treating LSH
values as keywords, it is possible to use SSE framework, which
is originally for encrypted keyword search, to enable similarity
search over the encrypted image patch database [18], [19].

However, LSH is an approximation algorithm that trades
accuracy for efficiency, which usually locates a large num-
ber of candidates with false positives introduced. Thus, the
search result of such a generic approach is often coarse-
grained, and does not meet the stringent requirements for
high quality similar patches in image denoising. Besides,
the lack of ability to differentiate the quality of candidates
of similar patches also invalidates any further meaningful
encrypted denoising operations that would possibly follow up.
These considerations drive us to further investigate how to
securely filter the false-positive candidate patches and obtain
similar patches accurately from the encrypted coarse-grained
search result. Trivially sending all encrypted candidates to the
users for local post-processing [18], [19], such as decryption,
distance computation, and threshold-based evaluation, is not
practically viable. One possible improvement is to let cloud
assist the encrypted distance computation via homomorphic
encryption [21]. However, our later analysis shows this is also
expensive in practice, due to the burdensome user interactions
with cloud as well as the high storage overhead at cloud.

In order to securely achieve high quality image patches
while minimizing the local cost, we propose to build our ser-
vices under the model of two non-colluding servers. We note
that using the two-server model has been popular in many
recent privacy-preserving designs which aim to achieve both
strong security and practical performance. Some examples
under such a model include ORAM [22], privacy-preserving
matrix factorization [23], [24], secure deduplication [25],
encrypted image feature extraction [26]–[28], and secure near-
duplicate detection [29]. The two-server model allows us to
exploit recent advancements on Yao’s garbled circuits [30] to
develop secure computation protocols and obtain high quality
similar patches from encrypted candidates without interactions
with the user. In particular, besides the cloud, the extra
server we introduce is mainly responsible for generating our
customized garbled circuit, which is to be securely evalu-
ated by the cloud for obtaining high quality similar patches.
Our implementation based on the advanced secure multi-
party computation framework ObliVM [31] demonstrates the
effectiveness and efficiency of the proposed design.

Furthermore, we investigate how to achieve effective denois-
ing based on the high quality similar patches obtained.
Typically, there are two types of operations for denoising

Fig. 1. The service model in our proposed design.

based on similar patches, i.e., non-linear operations and linear
operations [1]. Both can be directly supported by our design,
because after secure filtering of the false-positive candidate
patches, the user can conveniently retrieve all the high quality
patches to perform denoising operations thereafter. Besides,
for the linear operation based denoising, we also show how
to optionally shift a large amount of local denoising workload
to the cloud. Our extensive experiments demonstrate that the
denoising quality achieved by our secure design is close
to the optimal performance in the plaintext domain. Our
contributions can be summarized as follows:

• To the best of our knowledge, we are the first that
propose privacy-preserving image denoising from external
cloud databases. Specifically, our proposed design enables the
cloud hosting encrypted databases to provide secure query-
based image denoising services.

• We design and implement a secure computation protocol
based on Yao’s garbled circuits to ensure that high quality sim-
ilar patches are accurately obtained after encrypted similarity
search, so as to achieve quality-ensured denoising.

• We formally analyze the security guarantees of our
design and extensive experiments over real-world datasets
demonstrate the effectiveness of our design. We show that our
proposed design can achieve the denoising quality close to
directly computing in the plaintext domain.

The rest of this paper is organized as follows. Section II
presents our problem statement. Section III introduces some
preliminaries. Section IV gives the details of our design.
Section V presents the security analysis, followed by experi-
ments in Section VI. Section VII describes the related work.
Section VIII concludes the whole paper.

II. PROBLEM STATEMENT

A. Service Model

The basic service model targeted by our design is illustrated
in Fig. 1. At the core, it contains three parties: the service
provider (SP), the user, and the cloud. The SP outsources an
encrypted database of image patches to the cloud, and wants
to offer some secure “query” based image denoising service to
authorized users. For example, online image sharing websites
may construct a database with their collected images, and
deploy its encrypted version at the public cloud to provide
image denoising services for authorized users; a hospital can
deploy an encrypted database at the cloud to assist the doctors
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to denoise noisy medical images for improving diagnosis. The
user can issue encrypted “queries” to the cloud, hoping to find
high quality similar patches for image denoising and/or ask
the cloud to further perform as many operations as possible
over the encrypted search results. At certain points, the cloud
may interact with an extra server which belongs to sepa-
rate administrative domain, e.g., another independent cloud
entity, to assist the completion of encrypted image denoising
operations.

Note that although some public image datasets are available,
they may not be necessarily suited to accommodate various
kinds of image denoising applications and could be limited
for practical use. Our proposed design allows the SP to either
construct a generic database of patches extracted from a very
comprehensive set of self-own images, thus with very rich
structures, or customize a targeted database which is made
from self-own images that are relevant to noisy images [1].
On another hand, even if public image datasets are deployed
for denoising, it is of paramount importance to protect user’s
query images against the cloud. Therefore, an encrypted
service design would still be desirable and necessary.

B. Threat Model

We consider the SP’s image patch database and the user’s
query image patches to be private. Note that image patches
could be used to reconstruct original private images, so they
should be well protected [32], [33]. Our security goal is
to ensure that neither the cloud nor the extra server learns
such private data. We consider a semi-honest cloud, which
honestly follows the protocol specification, yet is curious in
inferring the private data. Besides, we assume that the semi-
honest extra server does not collude with the cloud. That
is, each of them is curious in inferring the private data,
but they do so independently. The intuition behind the non-
collusion assumption is that most cloud service providers are
well-established and they are unlikely to collude with each
other in order to maintain their own reputation and financial
interests [26], [27], [34]. As mentioned before, such a non-
colluding multi-server model has been commonly adopted in
the literature for various security-aware applications.

We do not consider that the cloud compromises the integrity
of the encrypted database and encrypted queries. In addition,
the SP and the user are assumed to be trustworthy. The SP is
responsible for user authorization, so that the user can directly
generate legitimate queries. We assume that the authorization
between the SP and the user is appropriately done.

III. PRELIMINARIES

A. Image Denoising

Image denoising is a fundamental image processing prob-
lem, which serves as a stepping stone for various image-
centric applications. The goal of image denoising is to restore a
clean image from its noise-corrupted version. Mathematically,
a noisy image Y is defined by

Y = X + E, (1)

where X is the original clean image, and E is the additive
white Gaussion noise (AWGN) with standard deviation � [35].
Therefore, given a noisy image Y, image denoising aims to
estimate the original image X as accurately as possible.

Numerous image denoising algorithms have been designed
during the past decades, among which the class of patch-based
image denoising algorithms is highly regarded [1]. Given a
patch q of a noisy image, a patch-based denoising algorithm
finds a set of similar patches S = {p1, p2, . . . , pk}, and then
applies some linear or non-linear operation � to produce an
estimate �p of the unknown clean patch p, i.e., �p = �( q; S).
By iterating the same process for each patch of the noisy
image, an estimate of the original image can be produced.

According to the source of similar patches, patch-based
denoising algorithms can be generally classified into two
types: internal denoising and external denoising [1]. Inter-
nal denoising searches similar patches within the noisy
image, while external denoising searches similar patches
from an external database. External denoising is a popular
trend [1], [6], [14], [15], which, in theory, has been proved
to be able to achieve the minimum mean squared estimation
error [14], [15], i.e., the optimal denoising quality. In this
paper, we focus on external denoising and investigate how
to enable privacy-preserving image denoising from encrypted
cloud databases.

Similar to prior work [36], we adopt the squared Euclidean
distance to measure the patch similarity, which is defined by

d(q, pi ) = ‖q − pi‖2
2 , (2)

where ‖·‖2
2 denotes the squared Euclidean distance. Given

a patch q, similar patches are defined as those ones whose
distances from q are within a pre-defined threshold.

Collecting the similar patches, we will focus on the linear
operation as the first instantiation. Specifically, we adopt the
operation of weighted average as in one of the most influential
denoising techniques called non-local means (NLM) denois-
ing [6], [37]. Specifically, given a noisy patch q and a set
of similar patches S = {p1, p2, . . . , pk}, the clean patch p is
estimated as the weighted average of all similar patches, i.e.,

�p =
k�

i=1

w(q, pi ) · pi . (3)

The weight w(q, pi ) is calculated as

w(q, pi ) = 1

Z
e
− ||q−pi ||22

h2 , (4)

where Z is the normalizing factor such that

Z =
k�

i=1

e
− ||q−pi ||22

h2 , (5)

and h is a filtering parameter depending on the standard
deviation � of the zero-mean Gaussian noise. Note that
� can be estimated from the noisy image through various
effective methods [38]–[40] and thus in the literature, � is
treated as a known prior, serving as an input to a denoising
algorithm [1], [35], [36]. Therefore, we also consider � as a
known priori.
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B. Yao’s Garbled Circuits

Yao’s garbled circuits enables two parties holding inputs
a and b, respectively, to jointly compute an arbitrary function
fun(a, b) without leaking any information about their inputs
beyond what is implied by the function output [30], [41].
Specifically, one party called the generator first prepares an
garbled version of a circuit which computes fun(·, ·). Then,
the generator provides the garbled circuit and the garbled
input �a corresponding to a for the other party called the
evaluator. The evaluator runs a 1-out-of-2 oblivious transfer
(OT 2

1 ) protocol with the generator to obliviously obtain the
garbled input �b corresponding to its private input b. From
�a and �b, the evaluator can evaluate the garbled circuit to obtain
the result of fun(a, b).

IV. PRIVACY-PRESERVING IMAGE EXTERNAL DENOISING

This section presents our design of privacy-preserving
image denoising from external cloud databases. Before giving
our main result, we first study some closely related existing
results from encrypted similarity search and encrypted distance
calculation. Through detailed analysis, we show that these
basic approaches, while serving as good starting points, are
not able to address our problem completely. The analysis of
their demerits will lead to our main result, which strikes a
balance between security and practicality.

A. The Basic Approaches

For encrypted similarity search, existing works have shown
that it can be achieved via the direct combination of
SSE [19], [42], [43] and LSH [18], [19]. Building upon
these works, we can let the cloud do the similarity search
over the encrypted image patch database. The good efficiency
of such a design serves as a good starting point for us.
However, as said previously, the search result of such a generic
approach often includes false-positive candidates, which are
usually unavoidable due to the approximation nature of LSH.
Consequently, for the betterment of image denoising quality,
a step of filtering false positives has to be enforced. Roughly
speaking, there are two possible ways to achieve this.

1) First Attempt: The first trivial one is to let the cloud
directly return the candidate patch ciphertexts, then the user
decrypts them, computes the distances, and further evaluates
which candidate patches satisfy the distance metric. In this
solution, the returned patch ciphertexts only need to be pro-
tected under symmetric encryption (SE) (e.g., AES), yet the
transmission of a large number of patch ciphertexts could incur
cumbersome bandwidth cost and undesirable post-processing.

2) Second Attempt: Instead of returning encrypted patches
for user-side filtering, the second possible way is to let
the cloud return encrypted distances to the user, who then
performs decryption and distance evaluation. This requires
encrypted distance calculation at the cloud. Instead of using
costly full homomorphic encryption, we observe that the
approach proposed by a recent work [21] can be adopted,
which is based on additively homomorphic encryption (AHE)
(e.g., the Paillier cryptosystem).

It works as follows. Given a database patch pi={pi, j }n
j=1,1

the SP generates the AHE ciphertexts {[p2
i, j ]}n

j=1
and {[−r j · pi, j ]}n

j=1, where {r j }n
j=1 is a randomly

generated secret vector. To submit a query for a noisy
patch q={q j }n

j=1, in addition to the search token,
the user produces the AHE ciphertexts {[q2

j ]}n
j=1 and

{r−1
j ·q j }n

j=1. To calculate the encrypted distance [d(q, pi )], for

j ∈ [1, n], the cloud first computes [−r j · pi, j ]2r−1
j ·q j =[−2q j ·

pi, j ] and [q2
j ][p2

i, j ][−2q j · pi, j ]=[(q j − pi, j )2]. Then, the
cloud calculates [d(q, pi )]=� n

j=1 [(q j − pi, j )2].
After calculating the encrypted distances between the query

patch and candidate patches, the cloud can send them to the
user, who then performs decryption and distance evaluation.
However, it has the following demerits: 1) the storage con-
sumption at the cloud side to support encrypted distance calcu-
lation could be cumbersome, as multiple AHE ciphertexts have
to be stored for each database patch pi , i.e., {[p2

i, j ]}n
j=1 and

{[−r j · pi, j ]}n
j=1. Suppose that the number of database patches

is N . The storage cost for these ciphertexts is 2×a×n×N ,
where a denotes the size of a Paillier ciphertext and typically
a=256 bytes [44]. Such storage cost could be significant as the
number of database patches grows large, which exactly is the
trend in the era of big data. For example, for a very large N say
1010 [6] and n=9×9=81, it would consume more than 370 TB
storage, which could be cumbersome; 2) the transmission of
a large number of AHE-protected distances may incur heavy
bandwidth cost. Note that generally the size of AHE ciphertext
is much larger than that of SE ciphertext. Returning the
AHE-protected distances actually consumes more bandwidth
than returning the SE-protected patch ciphertexts. In particular,
the size of an AHE ciphertext is 256 bytes, which could be
much larger than the patch ciphertext protected by SE like
AES. For example, by AES-128 in CTR mode, the ciphertext
for a 9×9 patch with pixels of 8-bit depth would be roughly
81 bytes.

B. Our Proposed Scheme

The above basic approaches demonstrates that user-guided
filtering is not practically viable. A more desirable approach
is to securely transfer the user-guided filtering to cloud-side
filtering. That is, we want to have a design to enable the
cloud to evaluate each candidate patch by itself after encrypted
similarity search, while being free of interactions with the user.

In the literature, we observe that the non-colluding two-
server model has been popular and is widely adopted to
facilitate various secure applications, such as ridge regres-
sion [45], matrix factorization [23], [24], and image feature
extraction [27]. Inspired by these works, we leverage the non-
colluding two-server model to securely change user-guided
filtering into cloud-side filtering, after we have obtained the
large number of candidates from encrypted similarity search.

1) Design Overview: To filter false-positive candidates at
the cloud side, we resort to the approach of Yao’s garbled
circuits, of which the performance has been steadily boosted
over the years [31]. Specifically, the extra server we introduce

1For ease of exposition, each patch is represented as a vector of n elements.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:12:47 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: PRIVACY-PRESERVING IMAGE DENOISING FROM EXTERNAL CLOUD DATABASES 1289

prepares garbled circuits for the cloud, who then acts as an
evaluator to securely evaluate whether the distances between
the query patch and candidate patches are within the threshold.
With a secure garbled circuit based design that protects the
patches against both the cloud and the extra server, we can
enable the cloud to find out the similar patches for denoising
securely and accurately, without interactions with the user.

a) Leveraging Yao’s garbled circuits: The basic way to
instantiate the garbled circuit based design for secure patch
evaluation is as follows. First, the extra server produces an
asymmetric key pair ( pkG , skG ) of a public-key encryption
scheme. Then, the public key pkG is used by the SP to
encrypt the database patches. When a user wants to query the
encrypted database for image denoising, she provides the cloud
with patches encrypted under pkG , along with the search
token. After encrypted similarity search, for each candidate
patch, the extra server prepares a garbled circuit and deploys
it to the cloud. The garbled circuit takes as input the garbled
values corresponding to the encrypted candidate patch [pid ],
query patch [q], and a threshold � . The evaluation inside the
circuit first decrypts the patch ciphertexts via the secret key
skG , computes the distance d(q, pid ), and finally compares it
with the threshold. This is a viable approach for secure evalua-
tion at the cloud side, yet we note that it lacks good efficiency
as decryption inside the circuit needs to be conducted [45].

b) Avoiding patch decryption within circuit: To avoid
decryption inside the circuit, we use the random masking
technique, inspired by [23], [29], [45]. The main idea is to
let the cloud add random masks to the encrypted patches in
the ciphertext domain, which can be realized if the patches are
encrypted with AHE. In this way, the extra server only obtains
masked patches after decrypting patch ciphertexts, and can
prepare a garbled circuit inside which the decryption module
is replaced by a lightweight subtraction module that removes
the mask. Thus, the efficiency of secure evaluation can be
improved.

c) Speedup via LSH-voting: Although the proper use of
garbled circuits allows the cloud-side filtering of false-positive
candidates, it does not directly enable a practical design and
thus some optimization is required. Specifically, the number
of candidate patches located via encrypted similarity search
usually could be considerably large. Thus, it is not practical
for the cloud to directly evaluate each candidate patch so as
to find sufficient, say k, similar patches for the denoising of a
query patch. Note that if we apply the Yao’s garbled circuits
design directly, the large number of possible candidates could
directly trigger the same amount of interactions between the
two servers, seriously downgrading the overall performance.

To address this issue, we further introduce a LSH-voting
mechanism in our design, exploiting the fact that the more
common LSH values two patches share, the more similar
they are [46]. Specifically, our design applies multiple LSH
functions, and uses a counter to record the occurrence of
common LSH values that the query patch and each candidate
patch share. Then, the candidate patches are ranked based
on the counters. Based on the ranking result, secure patch
evaluation now can be performed for the candidates in order.
As long as k accurately similar patches are identified, the

Algorithm 1 Building the Encrypted Database for Outsourcing
Input: Secret key: K = {Kg, K p}; Public key: pkG ; Patch

set: P = {p1, p2, · · · , pN }, where N is the total number of
database patches.

Output: Encrypted database E = {[P], [[P]], D}.
1: Initialize a generic dictionary D and the LSH value set G;
2: for all p ∈ P do
3: // Compute LSH values:
4: g = {h1(p)||1, · · · , hl (p)||l}, where gi = hi (p)||i ;
5: G.put (g);
6: end for
7: for all g ∈ G do
8: K1 ← F(Kg, 1||g), K2 ← F(Kg , 2||g);
9: Initialize counter ctr ← 0;

10: for all p associated with g do
11: u ← F(K1, ctr );
12: v ← SE.E(K2, id), where id is the unique identifier

of a database patch;
13: ctr + +;
14: D.inser t (u, v);
15: end for
16: end for
17: [P] ← AHE.E( pkG , P), [[P]] ← SE.E(K p, P) ;

cloud doesn’t need to evaluate the remaining candidates. With
this practical optimization, the efficiency of the overall system
performance can be significantly improved.

2) Scheme Details: We now present the details of our pro-
posed scheme which enables the user to securely obtain high
quality similar patches from the encrypted cloud database. It
supports the filtering of false-positive candidate patches at the
cloud side. In particular, we will show the details of building
the encrypted database, searching the encrypted database, and
evaluating the candidate patches. Let SE=(SE.E, SE.D) be
the pair of encryption/decryption algorithms in an SE scheme,
AHE=(AHE.E, AHE.D) in an AHE scheme, and F be a
pseudorandom function (PRF). The details of each scheme
phase is as follows.

a) Building the encrypted database: To outsource an
encrypted database that supports secure image denoising, the
SP encrypts the patches and builds a secure index from the
combination of LSH and SSE [43]. Multiple LSH functions
are applied, i.e., h1(·), h2(·), · · · , hl (·), for the LSH-voting
mechanism as described above. Algorithm 1 illustrates the
secure index building process. Specifically, the SP operates
as follows:

1) For each patch, generate the LSH values. Each of them
is associated with a patch identifier id , which is used to
not only locate the candidate patches, but also work for
the LSH-voting mechanism;

2) For each LSH value, compute a pseudorandom tag
u for each associated patch by applying a PRF to
a counter ctr , and encrypt the corresponding patch
identifier id . Then, insert the tag-ciphertext pair to a
generic dictionary D;

3) Output the dictionary D as the secure index.
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For patch encryption, the SP produces two ciphertexts��
p
�� =SE.E(K p, p) and [p]=AHE.E( pkG , p) for each data-

base patch p, where K p is a private key for patch encryption,
and pkG is the public key of the extra server. Note that as
all AHE patch ciphertexts are protected under the same public
key from the extra server, we might be able to assume that in
practice, different data owners who want to contribute to the
external cloud database can send both the plaintext patch and
its corresponding AHE ciphertext to the SP. In this way, the
computation cost of the SP can be alleviated.

b) Searching the encrypted database: The procedure of
search over the encrypted patch database is illustrated in
Algorithm 2. For each noisy patch q, the user sends the
cloud a secure search token, and an AHE ciphertext

�
q

�
which

would get involved in secure patch evaluation. In particular,
the protocol of encrypted patch search operates as follows:

1) To generate a secure search token for a query patch q,
the user first hashes q into a vector of LSH values.
Then, for each LSH value, a value pair {K1, K2} is
generated via a PRF and the resulting secure search
token Q consists of l such sub-tokens;

2) For each sub-token {K1, K2}, the cloud re-computes
the pseudorandom tag via F(K1, ctr ) and searches
the generic dictionary D to locate the corresponding
encrypted patch identifiers, which are then decrypted via
K2. Here, ctr is a self-incremental counter;

3) For each recovered patch identifier id , the cloud uses
an occurrence counter fid to record the number of
common LSH values it shares with the query patch.
Then, the cloud ranks the candidates based on the
occurrence counters, and derives a initial set S∗ of
candidate patches.

c) Evaluating the candidate patches: To filter the false-
positive candidates and identify k similar patches which
satisfy the distance metric, the cloud then runs a protocol
based on Yao’s garbled circuits with the extra server, to
securely evaluate each candidate according to its ranking
in S∗. The secure patch evaluation protocol operates as
follows:

1) For each encrypted candidate patch [pid ], the cloud
chooses a random mask r id , and produces [p′

id ] =
[pid ][r id ] = [pid+r id ]. Similarly, for the encrypted
query patch [q], the cloud produces [q′] = [q + rq ] =
[q][rq]. Then the cloud sends [q′] and [p′

id ] to the extra
server;

2) Upon receiving the processed patch ciphertexts, the extra
server first uses its private key skG to decrypt them
and derive the masked patches, i.e., q′=(q + rq ) and
p′

id=(pid + r id );
3) The extra server builds a garbled circuit consisting of

three modules, i.e., mask subtraction, distance calcula-
tion, and threshold comparison. Besides, it generates the
garbled input values for q′ and p′

id , i.e., �q′ and �p′
id . Then

the extra server sends the garbled circuit along with the
garbled input values �q′ and �p′

id to the cloud;
4) The cloud runs an oblivious transfer protocol

with the extra server to obtain the garbled

Algorithm 2 Searching the Encrypted Database for Denoising
Input: Secret key: K = {Kg, K p}; Public key: pkG ; Query

patch: q.
Output: Candidate patch set S∗.

User: // Secure query generation
1: g = {h1(q)||1, · · · , hl (q)||l};
2: for all g ∈ g do
3: K1 ← F(Kg, 1||g), K2 ← F(Kg , 2||g);
4: end for
5: [q] ← AHE.E( pkG , q);
6: Send Q = {K1, K2}l and [q] to the cloud;

Cloud: // Encrypted patch search
7: for all id do
8: Initialize occurrence counter fid = 0;
9: end for

10: for each {K1, K2} ∈ Q do
11: Counter ctr ← 0;
12: v ← D. f ind(F(K1, ctr ));
13: while v �= NU L L do
14: id ← SE.D(K2, v);
15: fid + +; ctr + +;
16: v ← D. f ind(F(K1, ctr ));
17: end while
18: end for
19: Rank located patches based on fid and output a ranked

candidate patch set S∗

values of the random masks rq , r id , and the
threshold � , i.e., �rq , �r id and �� ;

5) The cloud evaluates the garbled circuit and derives a
Boolean result, which indicates whether the candidate
patch satisfies the distance metric or not.

Note that the cloud terminates the process of secure patch
evaluation when it has located k accurately similar patches.
Besides, as the threshold � is independent of the original image
signal, it is no necessary to explicitly protect it against the
cloud here. Yet, our design can also secure it by simply asking
the user to encrypt it with pkG before sending it to the cloud.

As false-positive candidates are filtered at the cloud side, the
user can let the cloud return the accurately similar patches pro-
tected by SE and do all the other post-processing for denoising.
In particular, the user can perform denoising through either lin-
ear or non-linear operation based denoising techniques. In our
experiments, we have chosen the classical NLM technique as
an exemplary instantiation on linear operation based denoising
in our design. But our design readily allows the user to choose
more sophisticated techniques for denoising as well, such as
dictionary learning [35].

d) Discussion: We next show a possible design for the
case of linear operation based denoising, which can further
shift the local denoising workload from the user to the cloud
at the price of weight information exposure. This approach
is inspired by the second attempt with the help of additively
homomorphic encryption. It goes as follows. First, the SP addi-
tionally stores an AHE ciphertext for each database patch pi ,
i.e., [pi ]={[pi, j ]}n

j=1. After retrieving the accurately similar
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patches, the user computes the weight for each similar patch
as defined in Eq. 4, and sends them to the cloud. Without loss
of generality, we denote with {wi }k

i=1 the weights. With these
weights, the cloud can now produce the encrypted denoised
patch for the user by computing

�
p̂
� =

�
k�

i=1

wi pi

	

=
k


i=1

�
pi

� wi , (6)

where wi = � ·�wi	 is the integer representation of wi (� is a
scaling factor and �·	 is the rounding function), because AHE
operates over integers. In this way, the user does not need to
perform weighted average by herself.

We must note that the usage case of such kind of denoising
is restricted to weighted average based applications. The
saving on the local computation is actually traded off by the
exposure of weight information as well as the extra size of
AHE ciphertexts at cloud. Therefore, we remark that returning
accurately similar SE-protected patches is often more flexible
and can embrace various patch-based denoising techniques.

V. SECURITY ANALYSIS

In this section, we provide formal security analysis to
demonstrate the security guarantees of our proposed scheme.
Recall that the patches in the service flow of our design
are protected by encryption schemes which are semantically
secure. Besides, our design of secure patch evaluation based on
Yao’s garbled circuits and random masking ensures the secu-
rity for the input patches against both the cloud and the extra
server. And the output of secure patch evaluation only indicates
whether the distance between a candidate patch and the query
patch is within a threshold. Note that in our design, we
do not consider that the semi-honest cloud might misbehave
to evaluate the distances of the encrypted database patches,
rather than the designated distances between the candidate
patches and the query patch. Although such misbehavior might
be addressed by commitment-based verification primitives as
proposed in [23], [45], we leave it as our future work.

We mainly focus on analyzing the security of the interac-
tion between the user and the cloud during encrypted patch
search. In particular, we will follow the security framework
of SSE [42], [43], [47]. Firstly, we formally characterize the
leakages revealed by the encrypted database and from the
interactions. Then, we follow the simulation-based paradigm
to prove that our design is secure against adaptive chosen-
keyword attacks in the random oracle model.

We want to point out that the security framework adopted
by existing SSE schemes [42], [43], [47] allows access pat-
tern leakage and search pattern leakage. Here, access pattern
refers to the search result and the accessed content of the
secure index, while search pattern indicates whether the query
keyword has been used before. In addition, similar to existing
works on encrypted similarity search [18], [48] bridging SSE
and LSH, our design also allows the similarity leakages
between the queries. Recall that the search token of one
query contains multiple LSH values, and thus the number
of common LSH values two queries share indicates their

similarity. Formally, the leakage functions in our design are
defined as follows:

1) The leakage L edb from the encrypted database is

L edb = (M, |u|, |v|, |[p]|/ | ��
p
�� |),

where M is the number of entries in the secure index D,
|u| is the bit length of each tag in D, |v| is the bit length
of each encrypted value corresponding to |u|, and |[p]|
and | ��

p
�� | are the bit lengths of the encrypted patches

[p] and
��

p
��

, respectively.
2) The leakage L eps from encrypted patch search is

L eps = ({[pid ]/ ��
pid

�� }id∈S∗, Ns×s ),

where {[pid ], ��
pid

�� }id∈S∗ is the access pattern for a
given query, i.e., the search result of encrypted candidate
patches; Ns×s is a binary symmetric binary matrix that
records the repeated queries. That is, the entry of N in
the i th row and j th column is set to 1 if the i th query
and the j th query are the same, and 0 otherwise.

Given the above characterized leakages, we now follow the
security framework of [42], [43], [47] and give the simulation-
based security definition as follows.

Definition 1: Let � = (KeyGen, IndBuild, PatchSrh) be
the secure index-based scheme of encrypted patch search, �
be the security parameter, A be an adversary, and S be a
simulator. We define the following probabilistic experiments:
Real�, A (�) : The SP executes KeyGen to generate the private
keys. A selects a set of image patches, and asks the SP
to generate the index and the ciphertexts via the algorithm
IndBuild. Then A launches a polynomial number of s queries,
and asks the authorized user for the secure search tokens and
the resulting patch ciphertexts via the algorithm PatchSrh.
Finally, A outputs a bit.
Sim�, A ,S(�) : A selects a set of image patches. Then based on
the leakage L edb, S simulates an index and patch ciphertexts
for A . A launches a polynomial number of adaptive s queries.
Based on the leakage L eps , S returns simulated search tokens
and patch ciphertexts. Finally, A outputs a bit.

We say that � is (L edb, L eps )-secure against adaptive
chosen keyword attacks if for all polynomial-time adversaries
A , there exists a simulator S such that | Pr[Real�, A (�) = 1]−
Pr[Sim�, A ,S(�) = 1]| ≤ negl(�) , where negl(�) is a
negligible function in � .

We now prove that our design for encrypted patch search is
secure against adaptive chosen keywords attacks with respect
to the characterized leakages.

Theorem 1: Our design � for encrypted patch search is
(L edb, L eps)-secure against adaptive chosen-keyword attacks
in the random oracle model if (SE.E, SE.D) and (AHE.E,
AHE.D) are semantically secure, and F is a secure PRF.

Proof: We prove the existence of a simulator S such
that for all polynomial-time adversaries A , the output of
Real�, A (�) and Sim�, A ,S(�) are computationally indistin-
guishable. In particular, the simulator S can adaptively sim-
ulate an encrypted database �E (i.e., the secure index and
patch ciphertexts), and s adaptive queries ( �Q1, �Q2, . . . , �Qs )
as follows:
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1) Simulating the index D: Given L edb, S initializes a
dictionary �D with M entries. For each entry i , it inserts
a random bit string �v of size equal to |v|, which also
corresponds to a random unique search tag �u of size
equal to |u|.

2) Simulating the patch ciphertexts:
�
p
�
/

��
p
��

: Given L edb,

for each patch ciphertext, S simulates �� p
�
/ ��� p

��
, which

is a random bit string of size equal to



 � p

� 

 /



�� p

�� 


 .

3) Simulating the query Q: Given L eps , S can simulate the
first query and its corresponding results. In particular, for
each sub-token in the query Q1, it generates a random
string set { �K1, �K2} as a simulated sub-token in the
simulated query �Q1, where the length of each one is the
same as the real one. Then, S programs a random oracle
to point at randomly selected tag-ciphertext pairs in �D
and reveal the same identifiers to match the real ones
observed from the leakage L eps . The identical number
of simulated patch ciphertexts randomly assigned from
�� p

�
/ ��� p

��
are considered as the simulated query results.

The simulation can be extended to a number of adaptive
queries. To simulate the subsequent queries, if L eps

indicates that the query is a repeated one, S will select
the same entries in �D and use the same simulated tokens
and results generated before. Otherwise, S will perform
the same procedure as in simulating the first query.

The semantic security of symmetric encryption and homo-
morphic encryption, and the pseudorandomness of F ensures
that the real encrypted database (i.e., index and patch cipher-
texts) and the simulated one, and the real search tokens and
the simulated ones are computationally indistinguishable. We
want to point out that the simulated encrypted database has
the identical structure with the real encrypted database. That
is, the sizes of all data structures are the same, and random
strings with equal length are filled in the structures. Besides,
the search tokens in the simulated queries and the real ones
have the same structure, and the simulated results and the
real ones are identical. Therefore, the adversary A should not
be able to distinguish between the real interactions and the
simulated ones. The outputs of Real�, A (�) and Sim�, A ,S(�)
are computationally indistinguishable. �

VI. EXPERIMENTS

A. Implementations

We implement a preliminary system prototype in Java,
and test it on AWS “c4.4xlarge” instances in Linux (Ubuntu
Server 14.04.2 LTS). For image processing, we use the
OpenCV library2 to implement the functionalities of our patch
extraction and image reconstruction. For patch encryption,
we use the Java Cryptography Architecture (JCA) to realize
the standard symmetric encryption via AES-128 in CTR
mode, the PRF via HMAC-SHA1, and the Paillier library3

for additively homomorphic encryption. Note that we pack
multiple pixels into one Paillier ciphertext, so as to reduce the
space overhead of ciphertexts [49]. Regarding the PRF, it is

2OpenCV Library: http://opencv.org/
3Paillier Library:http://www.csee.umbc.edu/~kunliu1/research/Paillier.html

realized via the cryptographic hash function HMAC-SHA1 in
the JCA.

To prove the concept of our garbled circuit based design,
we use ObliVM-lang [31], the advanced framework for secure
multi-party computation, to compile our customized algorithm
and test the performance. We use E2LSH in our experi-
ments, and the LSH parameter l is set to 10 by default
for demonstration purpose, unless otherwise stated. We are
aware that this parameter setting either has been adopted in
some existing works (e.g., [50]), or has the same order of
magnitude as some existing works (e.g., [18], [51]). Hence, we
consider that the default setting l = 10 should be reasonable.
Tuning optimal LSH parameters is not the focus of this
paper and it could be addressed by some orthogonal works
(e.g., [52], [53]).

In our experiments, following most prior works which
use external database for image denoising [6], [8], [15], we
will evaluate denoising by generic database. Besides, for
completeness, we will also evaluate denoising by targeted
database [1]. In particular, for denoising by targeted database,
we denoise noisy face images by using patches extracted from
face images. In the case of generic database, following [8],
we use the Berkeley dataset4 which has 300 generic images.
We randomly select 200 images out of them, of which 100 are
used as the test images, and the rest are used to construct the
external database. Each generic image has a size 481 × 321,
and some examples of the test generic images are shown in
Fig. 2. In the targeted database case, following [1], we use
the FEI face dataset [54] which has 200 aligned frontal
face images of different persons with neutral expressions.
We randomly separate them into two non-overlapping subsets,
where one is used as the test images, and the other as the
database. Each subset has 100 face images of size 260 × 360,
and some examples of the test face images are shown in Fig. 3.
Note that each database image is partitioned into 9×9 patches
with 1-pixel overlap. Consequently, the generic database has
240, 000 patches, while the targeted database has 148, 500
patches.

Similar to the plaintext-domain work on image denois-
ing [1], [6], [8], [35], we generate noisy images by adding
zero-mean Gaussian noise with standard deviations ranging
from � =10 to � =40 to the test images. Besides, we use two
widely adopted metrics to evaluate the objective denoising
quality, namely peak signal to noise ratio (PSNR) and struc-
tural similarity (SSIM) [55]. In particular, the PSNR measures
the intensity difference between two images, while the SSIM
measures the perceptual quality [56]. During denoising, an
input noisy image is first partitioned into 9 × 9 patches
with 1-pixel overlap, and then each patch is denoised sepa-
rately. And following [8], we set the similarity threshold as
� =k2×� 2×n, where n is the number of pixels in a patch,
i.e., 81 in our setting, and k=1.126. The decay parameter h
is set to 0.35� . All denoised patches are combined to recon-
struct the denoised image, where the overlapping regions are
averaged.

4https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:12:47 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: PRIVACY-PRESERVING IMAGE DENOISING FROM EXTERNAL CLOUD DATABASES 1293

Fig. 2. Examples of the test generic images used in our experiments. They are denoted by “a”, “b”,..., “j” for convenience.

Fig. 3. Examples of the test face images used in our experiments. They are denoted by “a”, “b”,..., “j” for convenience.

Fig. 4. The performance of the secure index. (a) The index building cost;
(b) The patch search cost.

B. Performance Evaluation

1) Computation Performance: We measure the computation
performance with regard to the secure index in our design.
Fig. 4 shows the computation cost of index building and
encrypted patch search. From Fig. 4(a), it can be observed
that the index building time is linear in the size of the
patch database. For l=10, it takes about 41 seconds to insert

240, 000 patches on average. When the number of LSH
functions increases, the index building cost rises accordingly,
say from 130.5 seconds to 223.4 seconds when l changes from
30 to 50. As for the patch search cost at the cloud, it also
grows linearly in the number of database patches, as shown
in Fig. 4(b). Besides, when l increases, the patch search cost
grows accordingly. It takes about 203 µ s to generate the search
token for a query patch when l = 10, which is quite efficient.
Moreover, it takes about 1.85 seconds to evaluate the squared
Euclidean distance between the query patch and a candidate
patch, including the time of circuit generation and evaluation.

2) Storage Performance: We report the storage consump-
tion at the cloud side to support secure image external denois-
ing in our design. Recall that the database primarily contains
a secure index and patch ciphertexts. For the encrypted index,
we use the standard HashMap in Java to store l × N key-
value pairs, where N is the number of database patches.
Given the default load factor 0.75, in the case of targeted
database of 148, 500 patches, the index size is around 83.08
MB; in the case of generic database of 240, 000 patches, the
index size is around 134.28 MB. As for the patch ciphertexts,
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TABLE I

GENERIC DATABASE: COMPARISON OF PSNR (IN dB) AND SSIM RESULTS FOR 10 EXAMPLE TEST GENERIC IMAGES SHOWN IN FIG. 2

the size is N × (n + a) bytes, where n is the number of
pixels in a patch, and a is the size of one Paillier ciphertext.
Obviously, the size of patch ciphertexts is linear in the number
of patches in the database. In our experiments, for n = 81
and a = 256 bytes, in the case of targeted database, this
part consumes 40.59 MB; in the case of generic database, this
part consumes 77.13 MB. Overall, our design incurs modest
storage consumption at the cloud side to support secure image
external denoising service.

3) Bandwidth Performance: We now report the bandwidth
consumed for the user to query the encrypted cloud database
for image denoising. Recall that for each noisy patch, the
user needs to send a secure search token and one Paillier
ciphertext to the cloud. Each search token contains 2 × l sub-
tokens, each of which has a size of 20 bytes via HMAC-
SHA1. Therefore, the total size for each noisy query patch
is 40 × l + a bytes, where a is the size of one Paillier
ciphertext. For l = 10 and a = 256 bytes, the bandwidth
cost is only 0.64 KB for one query per patch, which is
modest.

4) Denoising Quality: We evaluate the denoising quality in
the cases of generic database and targeted database, respec-
tively. For each kind of database, we evaluate our proposed
method, and compare the result with a baseline method and
a secure LSH-voting based method. Specifically, the baseline
method is plaintext-domain external denoising that represents
the optimal performance, where we denoise a noisy query
patch by using accurately similar patches from a set of
60 database patches that have the smallest distances from it.

As for the secure LSH-voting based method, we use accurately
similar patches from the set of top-60 ranked candidate patches
which are decided via the LSH-voting mechanism, for the
denoising of a query patch. Recall that in our proposed
method, we also leverage the LSH-voting mechanism for fast
yet coarse-grained candidate patch selection, but further design
a secure two-party computation protocol to filter the false-
positive candidate patches. This ensures that similar patches,
the target number of which is 60, are accurately obtained for
denoising.

Table I shows the PSNR and SSIM results in the case of
generic database, for the examples of test images displayed in
Fig. 2. Further, Table II shows the average PSNR and SSIM
results for the experiments on 100 test generic images. It is
observed that the PSNR of the baseline method is higher than
the proposed method, by 0.523 dB on average. Regarding
the SSIM, the baseline method is 0.014 better than the
proposed method. On another hand, compared with the secure
LSH-voting based method, the PSNR and SSIM results of
the proposed method are superior for all the noise lev-
els. On average, in the generic database case, the pro-
posed method achieves 0.643 dB higher PSNR and 0.036
higher SSIM.

The denoising quality results under different number of LSH
functions is also compared in Table III for demonstration,
using � =20 as an example. It is shown that the denoising
quality provided by our proposed method and the secure
LSH-voting method could increase as more LSH functions
are used. Meanwhile, even more LSH functions are used, the
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TABLE II

GENERICDATABASE: COMPARISON OFAVERAGE PSNR (IN dB) AND SSIM RESULTS OF100 TEST GENERIC IMAGES

TABLE III

VARYING LSH PARAMETER L: AVERAGE PSNR (IN dB) AND SSIM RESULTS OF100 TEST GENERIC IMAGES (WITH � = 20)

denoising quality of our proposedmethod still outperforms
the secure LSH-voting method.Such quality gain is promised
as our design introduces a secure cloud-side Þltering step to
Þlter false-positive candidate patches caused by the inherent
approximation nature of LSH.

We further evaluate the visual denoising quality in the case
of generic database. Fig. 5 shows the visual denoising results
under different methods for the generic image shown in
Fig. 2(a) when � = 10. To show the details clearly, we
highlight two cropped regions with white rectangles and show
them at the bottom of the corresponding image. It is observed
that the details produced by the proposed method and the
baseline method are close. Meanwhile, compared with the
secure LSH-voting method, the proposed method produces
the details that are much closer to the original image.
Hence, the proposed method also outperforms the secure
LSH-voting method in terms of visual denoising
quality.

Table IV shows the PSNR and SSIM results in the case
of targeted database, for the examples of test face images dis-
played in Fig. 3. Further, Table V shows the average PSNR and
SSIM results for the experiments on 100 test face images. And
an example of visual denoising result is illustrated in Fig. 6.
It can be observed that the baseline method achieves higher
PSNR values than the proposed method, by 0.516 dB on aver-
age. In terms of the SSIM, the baseline method achieves higher
values than the proposed method in most cases, but sometimes
the proposed method is better. The reason is that sometimes the
distance measuring the intensitydifference might fail to reßect
the structure similarity faithfully. Thus, the patches adopted
by the proposed method for denoising might have structures
more similar to the original image. Compared with the secure
LSH-voting based method, the proposed method is supe-
rior in terms of both the PSNR and SSIM for all the
noise levels, though the denoising results are visually close.
On average, in the case of targeted database, the proposed
method achieves 0.179 dB higher PSNR and 0.004 higher
SSIM. Such improvement is less signiÞcant than that in the
generic database case, because targeted database consists of
images relevant to the noisy images only [1]. Therefore, the
capability of LSH in locating similar patches for denois-
ing could be superior to that in the generic database case,

which degrades the signiÞcance of secure patch evaluation.
On another hand, it should be noted that image denois-
ing from generic external database is the general case in
practice.

VII. R ELATED WORK

A. Image Denoising From Plaintext External Databases

Image denoising from external databases has become
popular in recent years. Levin et al. [14] show that in
theory the minimum mean squared error of denoising is
achievable by using an inÞnitely large external database.
Chan et al. [6] propose a computationally efÞcient random
sampling scheme for patch selection, reducing the complexity
of using large databases. These works use generic databases.
Very recently, Luo et al. [1] studied image denoising from
targeted databases. They apply a group sparsity minimization
and a localized prior to learn the optimal denoising Þlter.
Although effective, all the above works operate in the plaintext
domain.

B. Similarity Search Over Encrypted Data

Our proposed design is also akin to the works on encrypted
similarity search (to just list a few). In [18], Kuzu et al. study
similarity search over encrypted high-dimensional data. They
leverage LSH and build a secure index based on inverted
index. Their design, however, suffers from space inefÞciency
and index imbalance. In [19], Yuan et al. propose a secure
similarity index design for low latency applications where
each query only needs to retrieve a small number of similar
records with a controllable tradeoff on accuracy. In [57],
Cui et al. propose a secure cloud-assisted mobile image
sharing system, leveraging image correlation to support secure
image reproduction at cloud. They build their secure similarity
index over SIFT features. In these works, the search result
contains false positives.

In this paper, we initiate the Þrst study for privacy-
preserving image denoising from external cloud databases.
Our design leverages the very recent high performance SSE
construction [43] and integrates it with LSH, enabling a user
to securely locate candidate patches for denoising. In order to
obtain high quality patches that satisfy the distance metric
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Fig. 5. Generic database: example of visual denoising results when� = 10. (a) Original image; (b) Noisy image; (c) Baseline result; (d) Secure LSH-voting
result; (e) Our result.

TABLE IV

TARGETED DATABASE: COMPARISON OFPSNR (IN dB) AND SSIM RESULTS FOR10 EXAMPLE TEST FACE IMAGES AS SHOWN IN FIG. 3

Fig. 6. Targeted database: example of visual denoising results when� = 10. (a) Original image; (b) Noisy image; (c) Baseline result; (d) Secure LSH-voting
result; (e) Our result.

for denoising, we further design and implement a secure
two-party computation protocol based on YaoÕs garbled cir-
cuits to Þlter the false positives at the cloud. Note that
we resort to the SSE construction in [43] mainly due to
its high performance in index size, search computation, etc.
Meanwhile, it can be implemented via generic dictionary

structure and thus has good support for practical deployment.
A survey on secure searchable encryption can be found
in [58], which provides a comprehensive overview of both
SSE and public key searchable encryption (PKSE). Compared
with SSE, PKSE techniques are usually very computationally
expensive [59].
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TABLE V

TARGETED DATABASE: COMPARISON OFAVERAGE PSNR (IN dB) AND SSIM RESULTS OF100 TEST FACE IMAGES

C. Secure Computation Exploiting Garbled Circuits

Our work is also related to the works (to just list a
few) using YaoÕs garbled circuits for secure computation.
In [60], Huang et al. consider the privacy-preserving biometric
identiÞcation scenario where a user interactively runs the
identiÞcation protocol with the server hosting a biometric
database, so as to securely Þnd the closest match. They
exploit garbled circuits to securely evaluate which database
Þngerprint has the minimum distance from the query Þnger-
print. YaoÕs garbled circuits are also employed for privacy-
preserving ridge-regression in [45] and for privacy-preserving
matrix factorization in [23], respectively. These two works
both assume the existence of a third party generating garbled
circuits, who is assumed not to collude with the evaluator that
collects userÕs encrypted data. Similar to [45] and [23], our
design also assumes the existence of a non-colluding extra
server which assists the cloud to securely evaluate the located
candidate patches, ensuring that similar patches are accurately
obtained for image denoising.

VIII. C ONCLUSION

We have initiated the Þrst endeavor toward privacy-
preserving image denoising from external cloud databases. Our
proposed design enables the cloud hosting encrypted databases
to offer secure query-based image denoising services. Lever-
aging the encrypted similarity search bridging SSE and LSH
as our starting point, we have designed and implemented a
secure computation protocol based on YaoÕs garbled circuits
to ensure that similar patches are accurately obtained for
promising denoising performance. Formal security analysis
has been provided to justify the security guarantees of our
design, and extensive experiments over real-world datasets
have demonstrated that our design can achieve the denoising
quality close to the optimal performance in plaintext.
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