×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Statistics
News
Search in the results
Faculties & Institutes
Authors
Document Type
Journal article [4]
Date Issued
2016 [1]
2014 [1]
2013 [1]
2011 [1]
Language
英語English [4]
Source Publication
Journal of Fouri... [1]
Journal of Funct... [1]
Journal of Mathe... [1]
Nonlinear Analys... [1]
Indexed By
SCIE [4]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-4 of 4
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Author Ascending
Author Descending
Extra-strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces
Journal article
Journal of Mathematical Analysis and Applications, 2016,Volume: 437,Issue: 2,Page: 912-940
Authors:
Pei Dang
;
Tao Qian
;
Yan Yang
Favorite
|
|
TC[WOS]:
4
TC[Scopus]:
5
|
Submit date:2019/02/11
Amplitude Derivative
Hilbert Transform
Phase Derivative
Signals In Euclidean Spaces
Uncertainty Principle
Unbounded holomorphic Fourier multipliers on starlike Lipschitz surfaces and applications to Sobolev spaces
Journal article
Nonlinear Analysis, Theory, Methods and Applications, 2014,Volume: 95,Page: 436-449
Authors:
Li P.
;
Qian T.
Favorite
|
|
TC[WOS]:
0
TC[Scopus]:
1
|
Submit date:2019/02/11
Fourier Multiplier
Hardy-sobolev Spaces
Quaternionic Space
Singular Integral
Starlike Lipschitz Surface
A sharper uncertainty principle
Journal article
Journal of Functional Analysis, 2013,Volume: 265,Issue: 10,Page: 2239-2266
Authors:
Dang P.
;
Deng G.-T.
;
Qian T.
Favorite
|
|
TC[WOS]:
28
TC[Scopus]:
30
|
Submit date:2019/02/11
Hardy Spaces
Phase Derivative
Self-adjoint Operator
Sobolev Spaces
Uncertainty Principle
Hardy-Sobolev Spaces Decomposition in Signal Analysis
Journal article
Journal of Fourier Analysis and Applications, 2011,Volume: 17,Issue: 1,Page: 36
Authors:
Dang P.
;
Qian T.
;
You Z.
Favorite
|
|
TC[WOS]:
30
TC[Scopus]:
31
|
Submit date:2018/10/30
Amplitude-phase Representation Of Signal
Covariance
Hardy Space
Hardy-sobolev Space
Hilbert Transform
Mean Of Frequency
Mean Of Time
Phase Derivative
Sobolev Space
Uncertainty Principle