Selected(0)Clear
Items/Page: Sort: |
| Discrete uncertainty principle in quaternion setting and application in signal reconstruction Journal article International Journal of Wavelets, Multiresolution and Information Processing, 2021,Volume: 19,Issue: 5 Authors: Yang, Yan; Kou, Kit Ian ; Zou, Cuiming
 Favorite | | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/12/08 Discrete Uncertainty Principle Quaternion Fourier Transform Signal Reconstruction |
| A survey of orthogonal moments for image representation: Theory, implementation, and evaluation Journal article ACM Computing Surveys, 2021 Authors: Shuren Qi; Yushu Zhang; Chao Wang; Jiantao Zhou ; Xiaochun Cao
Adobe PDF | Favorite | | TC[WOS]:0 TC[Scopus]:0 | Submit date:2022/07/07 |
| Plancherel theorem and quaternion Fourier transform for square integrable functions Journal article COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019,Volume: 64,Issue: 2,Page: 223-242 Authors: Cheng, Dong; Kou, Kit Ian
 Favorite | | TC[WOS]:14 TC[Scopus]:16 | Submit date:2019/01/17 Quaternion Fourier transforms multiplication formula inversion theorem Plancherel theorem linear canonical transform |
| Generalized sampling expansions associated with quaternion Fourier transform Conference paper Mathematical Methods in the Applied Sciences Authors: Cheng D.; Kou K.I.
 Favorite | | TC[WOS]:8 TC[Scopus]:8 | Submit date:2019/02/13 convolution theorem generalized sampling expansions generalized translation quaternion Fourier transform quaternion linear canonical transform Quaternion-valued signals |
| Generalized sampling expansions associated with quaternion Fourier transform Journal article MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018,Volume: 41,Issue: 11,Page: 4021-4032 Authors: Cheng, Dong; Kou, Kit Ian
 Favorite | | TC[WOS]:8 TC[Scopus]:8 | Submit date:2018/10/30 Quaternion-valued Signals Quaternion Fourier Transform Quaternion Linear Canonical Transform Generalized Sampling Expansions Generalized Translation Convolution Theorem |
| Novel Sampling Formulas Associated with Quaternionic Prolate Spheroidal Wave functions Journal article ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017,Volume: 27,Issue: 4,Page: 2961-2983 Authors: Cheng, Dong; Kou, Kit Ian
 Favorite | | TC[WOS]:7 TC[Scopus]:10 | Submit date:2018/10/30 Spectral Theorem Prolate Spheroidal Wave Function Quaternion Reproducing-kernel Hilbert Spaces Quaternion Fourier Transform Whittaker-shannon-kotel'nikov Sampling Formula |
| Quaternion Wigner–Ville distribution associated with the linear canonical transforms Journal article Signal Processing, 2017,Volume: 130,Page: 129-141 Authors: Fan X.-L.; Kou K.I. ; Liu M.-S.
 Favorite | | TC[WOS]:18 TC[Scopus]:21 | Submit date:2019/02/13 2d Quaternion Wigner–ville Distribution Linear Frequency Modulation Quaternion Ambiguity Function Quaternion Linear Canonical Transform |
| Uncertainty principles associated with quaternionic linear canonical transforms Journal article Mathematical Methods in the Applied Sciences, 2016,Volume: 39,Issue: 10,Page: 2722-2736 Authors: Kou K.I. ; Ou J.; Morais J.
 Favorite | | TC[WOS]:21 TC[Scopus]:25 | Submit date:2019/02/13 Gaussian Quaternionic Signal Hypercomplex Functions Quantum Mechanics Quaternion Analysis Quaternionic Fourier Transform Quaternionic Linear Canonical Transform Uncertainly Principle |
| Tighter Uncertainty Principles Based on Quaternion Fourier Transform Journal article Advances in Applied Clifford Algebras, 2016,Volume: 26,Issue: 1,Page: 479-497 Authors: Yan Yang; Pei Dang; Tao Qian
 Favorite | | TC[WOS]:14 TC[Scopus]:16 | Submit date:2019/02/11 Covariance Quaternion Fourier Transform Uncertainty Principle |
| On uncertainty principle for quaternionic linear canonical transform Journal article Abstract and Applied Analysis, 2013,Volume: 2013 Authors: Kou K.I. ; Ou J.-Y.; Morais J.
 Favorite | | TC[WOS]:46 TC[Scopus]:63 | Submit date:2018/10/30 |