×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [1]
Authors
WAN FENG [1]
YANG ZHIXIN [1]
Document Type
Journal article [3]
Date Issued
2021 [1]
2020 [2]
Language
英語English [3]
Source Publication
IEEE Transaction... [1]
IEEE Transaction... [1]
Neural Networks [1]
Indexed By
SCIE [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-3 of 3
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Title Ascending
Title Descending
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
On the Benefits of Two Dimensional Metric Learning
Journal article
IEEE Transactions on Knowledge and Data Engineering, 2021
Authors:
Wu, Di
;
Zhou, Fan
;
Wang, Boyu
;
Wong, Chi Man
;
Shui, Changjian
;
Zhou, Yuan
;
Lao, Qicheng
;
Wan, Feng
Favorite
|
|
TC[WOS]:
0
TC[Scopus]:
0
|
Submit date:2022/05/13
boosting
Brain modeling
Complexity theory
Electroencephalography
Indexes
low-rank matrices
Measurement
metric learning
Rademacher complexity
Symmetric matrices
Two dimensional learning
Upper bound
Finite Gaussian Mixture Model Based Multimodeling for Nonlinear Distributed Parameter Systems
Journal article
IEEE Transactions on Industrial Informatics, 2020,Volume: 16,Issue: 3,Page: 1754-1763
Authors:
Xu, Kangkang
;
Yang, Haidong
;
Zhu, Chengjiu
;
Hu, Luoke
Favorite
|
|
TC[WOS]:
10
TC[Scopus]:
10
|
Submit date:2021/12/06
Distributed parameter systems (DPSs)
finite Gaussian mixture model (FGMM)
multiple spatiotemporal modeling
principle component regression (PCR)
Rademacher complexity
A new learning paradigm for random vector functional-link network: RVFL+
Journal article
Neural Networks, 2020,Volume: 122,Page: 94-105
Authors:
Zhang,Peng Bo
;
Yang,Zhi Xin
Favorite
|
|
TC[WOS]:
24
TC[Scopus]:
25
|
Submit date:2021/03/11
Krvfl++
Learning Using Privileged Information
Random Vector Functional Link Networks
Rvfl++
Svm++
The Rademacher Complexity