UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
Sampling expansions associated with quaternion difference equations Journal article
Linear and Multilinear Algebra, 2022
Authors:  Cheng, Dong;  Kou, Kit Ian;  Xia, Yonghui;  Xu, Junfeng
Favorite |  | TC[WOS]:1 TC[Scopus]:0 | Submit date:2022/08/05
11r52  12e05  39a12  41a05  Interpolation  Quaternion Difference Equations  Quaternion Polynomials  Sampling Expansions  Tridiagonal Matrices  
A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations Journal article
SIAM Journal on Matrix Analysis and Applications, 2017,Volume: 38,Issue: 4,Page: 1580-1614
Authors:  Lin,Xue Lei;  Ng,Michael K.;  Sun,Hai Wei
Adobe PDF | Favorite |  | TC[WOS]:40 TC[Scopus]:41 | Submit date:2019/05/27
Diagonal-times-toeplitz Matrices  Preconditioners  Space-fractional Diffusion Equations Krylov Subspace Methods  Variable Coecients  
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices Journal article
Applied Numerical Mathematics, 2014,Volume: 83,Page: 38-50
Authors:  Li W.;  Vong S.-W.;  Peng X.-F.
Favorite |  | TC[WOS]:2 TC[Scopus]:3 | Submit date:2018/12/24
Eigenvalue Perturbation  Hermitian Block Tridiagonal Matrices  Saddle Point Matrices  Weyl's Bound  
A high-order exponential ADI scheme for two dimensional time fractional convection-diffusion equations Journal article
Computers and Mathematics with Applications, 2014,Volume: 68,Issue: 3,Page: 185-196
Authors:  Wang Z.;  Vong S.
Favorite |  | TC[WOS]:29 TC[Scopus]:29 | Submit date:2018/12/24
Alternating Direction Implicit (Adi) Method  Convergence  High Order Compact Exponential Difference Scheme  Two Dimensional Fractional Convection-diffusion Equation  
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices Journal article
Applied Numerical Mathematics, 2014,Volume: 83,Page: 38-50
Authors:  Li,Wen;  Vong,Seak Weng;  Peng,Xiao Fei
Favorite |  | TC[WOS]:2 TC[Scopus]:3 | Submit date:2021/03/09
Eigenvalue perturbation  Hermitian block tridiagonal matrices  Saddle point matrices  Weyl's bound  
Numerical comparison of Monte Carlo methods for linear systems Book chapter
出自: Recent Advances in Computational Mathematics:International Press of Boston, 2008, 页码: 103--118
Authors:  Deng Ding;  Xiao-qing Jin;  Ying-ying Zhang
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/07/24