UM

Browse/Search Results:  1-10 of 262 Help

Selected(0)Clear Items/Page:    Sort:
Unsupervised Learning of 3-D Local Features From Raw Voxels Based on a Novel Permutation Voxelization Strategy Journal article
IEEE Transactions on Cybernetics, 2019,Volume: 49,Issue: 2,Page: 481-494
Authors:  Han Z.;  Liu Z.;  Han J.;  Vong C.-M.;  Bu S.;  Chen C.L.P.
Favorite |  | TC[WOS]:0 TC[Scopus]:25 | Submit date:2019/02/11
3-d Local Features  3-d Voxelization  Deep Learning  Stacked Sparse Autoencoder (Ssae)  Unsupervised Feature Learning  
A Regularized Variable Projection Algorithm for Separable Nonlinear Least-Squares Problems Journal article
IEEE Transactions on Automatic Control, 2019,Volume: 64,Issue: 2,Page: 526-537
Authors:  Chen G.-Y.;  Gan M.;  Chen C.L.P.;  Li H.-X.
Favorite |  | TC[WOS]:121 TC[Scopus]:124 | Submit date:2019/02/11
Data Fitting  Regularization  Separable Nonlinear Least Squares (Snlls)  Variable Projection (Vp)  Weighted Generalized Cross Validation (Wgcv)  
SeqViews2SeqLabels: Learning 3D global features via aggregating sequential views by RNN with attention Journal article
IEEE Transactions on Image Processing, 2019,Volume: 28,Issue: 2,Page: 658-672
Authors:  Han Z.;  Shang M.;  Liu Z.;  Vong C.-M.;  Liu Y.-S.;  Zwicker M.;  Han J.;  Chen C.L.P.
Favorite |  | TC[WOS]:78 TC[Scopus]:104 | Submit date:2019/02/14
3d Feature Learning  Attention  Rnn  Sequential Labels  Sequential Views  View Aggregation  
Fuzzy adaptive finite-time control design for nontriangular stochastic nonlinear systems Journal article
IEEE Transactions on Fuzzy Systems, 2019,Volume: 27,Issue: 1,Page: 172-184
Authors:  Sui S.;  Chen C.L.P.;  Tong S.
Favorite |  | TC[WOS]:158 TC[Scopus]:158 | Submit date:2019/02/11
Multiple-input And Multiple-output (Mimo) Stochastic Nonlinear Systems  Nontriangular Form  State Filter  Stochastically Finite-time Control  
Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems Journal article
IEEE Transactions on Neural Networks and Learning Systems, 2018,Volume: 29,Issue: 12,Page: 6113-6122
Authors:  Li Z.;  Yuan W.;  Chen Y.;  Ke F.;  Chu X.;  Chen C.L.P.
Favorite |  | TC[WOS]:43 TC[Scopus]:44 | Submit date:2019/02/11
Formation control  multiple mobile robots  neural-dynamic optimization  nonlinear model predictive control (NMPC)  
Finite-time formation control of under-actuated ships using nonlinear sliding mode control Journal article
IEEE Transactions on Cybernetics, 2018,Volume: 48,Issue: 11,Page: 3243-3253
Authors:  Li T.;  Zhao R.;  Chen C.L.P.;  Fang L.;  Liu C.
Favorite |  | TC[WOS]:141 TC[Scopus]:147 | Submit date:2019/02/11
Finite-time stability  formation control  nonlinear sliding mode control  under-actuated ships  
Optimized Multi-Agent Formation Control Based on an Identifier-Actor-Critic Reinforcement Learning Algorithm Journal article
IEEE Transactions on Fuzzy Systems, 2018,Volume: 26,Issue: 5,Page: 2719-2731
Authors:  Wen G.;  Chen C.L.P.;  Feng J.;  Zhou N.
Favorite |  | TC[WOS]:50 TC[Scopus]:47 | Submit date:2019/02/11
Fuzzy logic systems (FLSs)  identifier-actor-critic architecture  multi-agent formation  optimized formation control  reinforcement learning (RL)  
Event-triggered fault detector and controller coordinated design of fuzzy systems Journal article
IEEE Transactions on Fuzzy Systems, 2018,Volume: 26,Issue: 4,Page: 2004-2016
Authors:  Su X.;  Xia F.;  Wu L.;  Chen C.L.P.
Favorite |  | TC[WOS]:48 TC[Scopus]:45 | Submit date:2019/02/11
Fault detection (FD)  fuzzy control  fuzzy systems  packet dropouts  
Substructural Regularization with Data-Sensitive Granularity for Sequence Transfer Learning Journal article
IEEE Transactions on Neural Networks and Learning Systems, 2018,Volume: 29,Issue: 6,Page: 2545-2557
Authors:  Sun S.;  Liu H.;  Meng J.;  Chen C.L.P.;  Yang Y.
Favorite |  | TC[WOS]:7 TC[Scopus]:6 | Submit date:2019/02/11
Data-sensitive granularity  hidden Markov model (HMM)  relative entropy (RE)  sequence transfer learning  substructural regularization  
Deep Spatiality: Unsupervised Learning of Spatially-Enhanced Global and Local 3D Features by Deep Neural Network with Coupled Softmax Journal article
IEEE Transactions on Image Processing, 2018,Volume: 27,Issue: 6,Page: 3049-3063
Authors:  Han Z.;  Liu Z.;  Vong C.-M.;  Liu Y.-S.;  Bu S.;  Han J.;  Chen C.L.P.
Favorite |  | TC[WOS]:26 TC[Scopus]:31 | Submit date:2019/02/11
Coupled Softmax  Deep Spatial  Directed Circular Graph  Spatially-enhanced 3d Features