UM

Browse/Search Results:  1-10 of 19 Help

Selected(0)Clear Items/Page:    Sort:
A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions Journal article
Numerical Methods for Partial Differential Equations, 2020,Volume: 36,Issue: 3,Page: 579-600
Authors:  Lyu,Pin;  Vong,Seakweng
Favorite |  | TC[WOS]:3 TC[Scopus]:3 | Submit date:2021/03/09
Caputo Derivative  Finite Difference Scheme  Fractional Bbm-type Equation  Nonuniform Time Grid  Unconditional Convergence  
A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony‐type equation with nonsmooth solutions Journal article
Numerical Methods for Partial Differential Equations, 2020
Authors:  Pin, Lyu;  Seakweng, Vong
Favorite |  | TC[WOS]:0 TC[Scopus]:3 | Submit date:2022/07/01
Caputo Derivative  Finite Difference Scheme  Fractional Bbm-type Equation  Nonuniform Time Grid  Unconditional Convergence  
High accuracy error estimates of a Galerkin finite element method for nonlinear time fractional diffusion equation Journal article
Numerical Methods for Partial Differential Equations, 2020,Volume: 36,Issue: 2,Page: 284-301
Authors:  Ren,Jincheng;  Shi,Dongyang;  Vong,Seakweng
Favorite |  | TC[WOS]:10 TC[Scopus]:11 | Submit date:2021/03/09
Fast Convolution Algorithm  Galerkin Finite Element Method  Nonlinear Time Fractional Diffusion Equation  Superconvergent Result  
A study on a second order finite difference scheme for fractional advection–diffusion equations Journal article
Numerical Methods for Partial Differential Equations, 2019,Volume: 35,Issue: 2,Page: 493-508
Authors:  Vong,Seakweng;  Shi,Chenyang;  Lyu,Pin
Favorite |  | TC[WOS]:2 TC[Scopus]:4 | Submit date:2021/03/09
Finite Difference Method  Fractional Advection–diffusion Equations  Second Order Scheme  
A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein-Gordon-Schrodinger equation Journal article
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018,Volume: 34,Issue: 6,Page: 2153-2179
Authors:  Lyu, Pin;  Vong, Seakweng
Favorite |  | TC[WOS]:6 TC[Scopus]:6 | Submit date:2018/10/30
Fractional Klein-gordon-schrodinger Equations  Linearized Scheme  Second-order Convergent  Unconditionally Convergent And Stable  
Fast solution algorithms for exponentially tempered fractional diffusion equations Journal article
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018,Volume: 34,Issue: 4,Page: 1301-1323
Authors:  Lei, Siu-Long;  Fan, Daoying;  Chen, Xu
Favorite |  | TC[WOS]:2 TC[Scopus]:3 | Submit date:2018/10/30
Circulant And skew-Circulant Representation Of Toeplitz Inversion  Circulant Preconditioner  Fast Fourier Transform  Tempered Fractional Diffusion Equations  Toeplitz Matrix  
Fast solution algorithms for exponentially tempered fractional diffusion equations Journal article
Numerical Methods for Partial Differential Equations, 2018,Volume: 34,Issue: 4,Page: 1301-1323
Authors:  Lei,Siu Long;  Fan,Daoying;  Chen,Xu
Favorite |  | TC[WOS]:2 TC[Scopus]:3 | Submit date:2021/03/11
Circulant And skew-Circulant Representation Of Toeplitz Inversion  Circulant Preconditioner  Fast Fourier Transform  Tempered Fractional Diffusion Equations  Toeplitz Matrix  
High-order compact schemes for fractional differential equations with mixed derivatives Journal article
Numerical Methods for Partial Differential Equations, 2017,Volume: 33,Issue: 6,Page: 2141-2158
Authors:  Vong S.;  Shi C.;  Lyu P.
Favorite |  | TC[WOS]:2 TC[Scopus]:2 | Submit date:2018/12/24
Fractional Differential Equation  High-order Compact Scheme  Mixed Derivatives  
Numerical methods for weak solution of wave equation with van der Pol type nonlinear boundary conditions Journal article
Numerical Methods for Partial Differential Equations, 2016,Volume: 32,Issue: 2,Page: 373-398
Authors:  Liu,Jun;  Huang,Yu;  Sun,Haiwei;  Xiao,Mingqing
Favorite |  | TC[WOS]:6 TC[Scopus]:7 | Submit date:2019/05/27
Chaotic Dynamics  Finite Difference  Numerical Integration  Van Der Pol Boundary Condition  Wave Equation  Weak Solution  
Numerical methods for weak solution of wave equation with van der Pol type boundary conditions Journal article
Numerical Methods for Partial Differential Equations, 2016,Page: 373-398
Authors:  Liu, J.;  Huang, Y.;  Sun, H. W.;  Xiao, M.Q.
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2022/07/25
Wave equation  van der Pol type boundary condition  weak solutions  chaotic behavior  numerical integration  finite difference